Self-assembled wiggling nano-structures and the principle of maximum entropy production
- PMID:25662746
- PMCID: PMC4321171
- DOI: 10.1038/srep08323
Self-assembled wiggling nano-structures and the principle of maximum entropy production
Abstract
While behavior of equilibrium systems is well understood, evolution of nonequilibrium ones is much less clear. Yet, many researches have suggested that the principle of the maximum entropy production is of key importance in complex systems away from equilibrium. Here, we present a quantitative study of large ensembles of carbon nanotubes suspended in a non-conducting non-polar fluid subject to a strong electric field. Being driven out of equilibrium, the suspension spontaneously organizes into an electrically conducting state under a wide range of parameters. Such self-assembly allows the Joule heating and, therefore, the entropy production in the fluid, to be maximized. Curiously, we find that emerging self-assembled structures can start to wiggle. The wiggling takes place only until the entropy production in the suspension reaches its maximum, at which time the wiggling stops and the structure becomes quasi-stable. Thus, we provide strong evidence that maximum entropy production principle plays an essential role in the evolution of self-organizing systems far from equilibrium.
Figures





Similar articles
- Nonequilibrium thermodynamics and maximum entropy production in the Earth system: applications and implications.Kleidon A.Kleidon A.Naturwissenschaften. 2009 Jun;96(6):653-77. doi: 10.1007/s00114-009-0509-x. Epub 2009 Feb 26.Naturwissenschaften. 2009.PMID:19241052Review.
- Non-equilibrium thermodynamics, maximum entropy production and Earth-system evolution.Kleidon A.Kleidon A.Philos Trans A Math Phys Eng Sci. 2010 Jan 13;368(1910):181-96. doi: 10.1098/rsta.2009.0188.Philos Trans A Math Phys Eng Sci. 2010.PMID:19948550
- Maximization principles and daisyworld.Ackland GJ.Ackland GJ.J Theor Biol. 2004 Mar 7;227(1):121-8. doi: 10.1016/j.jtbi.2003.10.007.J Theor Biol. 2004.PMID:14969710
- Non-equilibrium magnetic colloidal dispersions at liquid-air interfaces: dynamic patterns, magnetic order and self-assembled swimmers.Snezhko A.Snezhko A.J Phys Condens Matter. 2011 Apr 20;23(15):153101. doi: 10.1088/0953-8984/23/15/153101. Epub 2011 Mar 24.J Phys Condens Matter. 2011.PMID:21436505Review.
- Maximum or minimum entropy production? How to select a necessary criterion of stability for a dissipative fluid or plasma.Di Vita A.Di Vita A.Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Apr;81(4 Pt 1):041137. doi: 10.1103/PhysRevE.81.041137. Epub 2010 Apr 29.Phys Rev E Stat Nonlin Soft Matter Phys. 2010.PMID:20481707
Cited by
- Evaluating the Adiabatic Invariants in Magnetized Plasmas Using a Classical Ehrenfest Theorem.Tamburrini A, Davis S, Moya PS.Tamburrini A, et al.Entropy (Basel). 2023 Nov 18;25(11):1559. doi: 10.3390/e25111559.Entropy (Basel). 2023.PMID:37998251Free PMC article.
- A Review of Binderless Polycrystalline Diamonds: Focus on the High-Pressure-High-Temperature Sintering Process.Guignard J, Prakasam M, Largeteau A.Guignard J, et al.Materials (Basel). 2022 Mar 16;15(6):2198. doi: 10.3390/ma15062198.Materials (Basel). 2022.PMID:35329649Free PMC article.Review.
- Stability and conductivity of self assembled wires in a transverse electric field.Stephenson C, Hubler A.Stephenson C, et al.Sci Rep. 2015 Oct 14;5:15044. doi: 10.1038/srep15044.Sci Rep. 2015.PMID:26463476Free PMC article.
- Recent Progress in Nanotechnology-Based Approaches for Food Monitoring.Nam NN, Do HDK, Trinh KTL, Lee NY.Nam NN, et al.Nanomaterials (Basel). 2022 Nov 22;12(23):4116. doi: 10.3390/nano12234116.Nanomaterials (Basel). 2022.PMID:36500739Free PMC article.Review.
- Is the catalytic activity of triosephosphate isomerase fully optimized? An investigation based on maximization of entropy production.Bonačić Lošić Ž, Donđivić T, Juretić D.Bonačić Lošić Ž, et al.J Biol Phys. 2017 Mar;43(1):69-86. doi: 10.1007/s10867-016-9434-3. Epub 2017 Jan 3.J Biol Phys. 2017.PMID:28050739Free PMC article.
References
- Kleidon A. et al. Non-equilibrium Thermodynamics and Entropy Production: Life, Earth and Beyond (eds. Kleidon A., & Lorenz R.) (Springer, Heidelberg, 2005).
- Martyushev L. M. & Seleznev V. D. Maximum entropy production principle in physics, chemistry and biology. Phys. Rep. 426, 1–45 (2006).
- Dewar R. C. et al. Beyond the Second Law. Entropy Production and Non-Equilibrium Systems (eds. Dewar R. C., Lineweaver C. H., Niven R. K., & Regenauer-Lieb K.) (Springer, Heidelberg, 2014).
- Onsager L. Reciprocal relations in irreversible processes. I. Phys. Rev. 37, 405–426 (1931).
- Onsager L. Reciprocal relations in irreversible processes. II. Phys. Rev. 38, 2265–2279 (1931).
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources