A recurrent regulatory change underlying altered expression and Wnt response of the stickleback armor plates gene EDA
- PMID:25629660
- PMCID: PMC4384742
- DOI: 10.7554/eLife.05290
A recurrent regulatory change underlying altered expression and Wnt response of the stickleback armor plates gene EDA
Abstract
Armor plate changes in sticklebacks are a classic example of repeated adaptive evolution. Previous studies identified ectodysplasin (EDA) gene as the major locus controlling recurrent plate loss in freshwater fish, though the causative DNA alterations were not known. Here we show that freshwater EDA alleles have cis-acting regulatory changes that reduce expression in developing plates and spines. An identical T → G base pair change is found in EDA enhancers of divergent low-plated fish. Recreation of the T → G change in a marine enhancer strongly reduces expression in posterior armor plates. Bead implantation and cell culture experiments show that Wnt signaling strongly activates the marine EDA enhancer, and the freshwater T → G change reduces Wnt responsiveness. Thus parallel evolution of low-plated sticklebacks has occurred through a shared DNA regulatory change, which reduces the sensitivity of an EDA enhancer to Wnt signaling, and alters expression in developing armor plates while preserving expression in other tissues.
Keywords: Wnt signaling; chromosomes; ectodysplasin gene; enhancer; evolutionary biology; genes; genomics; recurrent mutation; skeletal development; sticklebacks.
Conflict of interest statement
The authors declare that no competing interests exist.
Figures







Similar articles
- Environment specific pleiotropy facilitates divergence at the Ectodysplasin locus in threespine stickleback.Barrett RD, Rogers SM, Schluter D.Barrett RD, et al.Evolution. 2009 Nov;63(11):2831-7. doi: 10.1111/j.1558-5646.2009.00762.x. Epub 2009 Jun 22.Evolution. 2009.PMID:19545262
- Widespread parallel evolution in sticklebacks by repeated fixation of Ectodysplasin alleles.Colosimo PF, Hosemann KE, Balabhadra S, Villarreal G Jr, Dickson M, Grimwood J, Schmutz J, Myers RM, Schluter D, Kingsley DM.Colosimo PF, et al.Science. 2005 Mar 25;307(5717):1928-33. doi: 10.1126/science.1107239.Science. 2005.PMID:15790847
- Constraints on utilization of the EDA-signaling pathway in threespine stickleback evolution.Knecht AK, Hosemann KE, Kingsley DM.Knecht AK, et al.Evol Dev. 2007 Mar-Apr;9(2):141-54. doi: 10.1111/j.1525-142X.2007.00145.x.Evol Dev. 2007.PMID:17371397
- The ectodysplasin pathway: from diseases to adaptations.Sadier A, Viriot L, Pantalacci S, Laudet V.Sadier A, et al.Trends Genet. 2014 Jan;30(1):24-31. doi: 10.1016/j.tig.2013.08.006. Epub 2013 Sep 23.Trends Genet. 2014.PMID:24070496Review.
- Adaptive evolution of lateral plates in three-spined stickleback Gasterosteus aculeatus: a case study in functional analysis of natural variation.Barrett RD.Barrett RD.J Fish Biol. 2010 Aug;77(2):311-28. doi: 10.1111/j.1095-8649.2010.02640.x.J Fish Biol. 2010.PMID:20646158Review.
Cited by
- REforge Associates Transcription Factor Binding Site Divergence in Regulatory Elements with Phenotypic Differences between Species.Langer BE, Roscito JG, Hiller M.Langer BE, et al.Mol Biol Evol. 2018 Dec 1;35(12):3027-3040. doi: 10.1093/molbev/msy187.Mol Biol Evol. 2018.PMID:30256993Free PMC article.
- Freshwater Colonization, Adaptation, and Genomic Divergence in Threespine Stickleback.Aguirre WE, Reid K, Rivera J, Heins DC, Veeramah KR, Bell MA.Aguirre WE, et al.Integr Comp Biol. 2022 Aug 25;62(2):388-405. doi: 10.1093/icb/icac071.Integr Comp Biol. 2022.PMID:35660873Free PMC article.
- The Evolution of Gene Expression in cis and trans.Signor SA, Nuzhdin SV.Signor SA, et al.Trends Genet. 2018 Jul;34(7):532-544. doi: 10.1016/j.tig.2018.03.007. Epub 2018 Apr 18.Trends Genet. 2018.PMID:29680748Free PMC article.Review.
- Evolving New Skeletal Traits by cis-Regulatory Changes in Bone Morphogenetic Proteins.Indjeian VB, Kingman GA, Jones FC, Guenther CA, Grimwood J, Schmutz J, Myers RM, Kingsley DM.Indjeian VB, et al.Cell. 2016 Jan 14;164(1-2):45-56. doi: 10.1016/j.cell.2015.12.007. Epub 2016 Jan 7.Cell. 2016.PMID:26774823Free PMC article.
- Multiple waves of freshwater colonization of the three-spined stickleback in the Japanese Archipelago.Kakioka R, Mori S, Kokita T, Hosoki TK, Nagano AJ, Ishikawa A, Kume M, Toyoda A, Kitano J.Kakioka R, et al.BMC Evol Biol. 2020 Nov 3;20(1):143. doi: 10.1186/s12862-020-01713-5.BMC Evol Biol. 2020.PMID:33143638Free PMC article.
References
- Avise JC. Genetics of plate morphology in an unusual population of threespine sticklebacks (Gasterosteus aculeatus) Genetical Research. 1976;27:33–46. doi: 10.1017/S0016672300016219. - DOI
- Bell MA, Foster SA. The evolutionary biology of the threespine stickleback. Oxford University Press; 1994.
Publication types
MeSH terms
Substances
Related information
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials