Visualization and quantification of transmembrane ion transport into giant unilamellar vesicles
- PMID:25556546
- PMCID: PMC4506561
- DOI: 10.1002/anie.201410200
Visualization and quantification of transmembrane ion transport into giant unilamellar vesicles
Abstract
Transmembrane ion transporters (ionophores) are widely investigated as supramolecular agents with potential for biological activity. Tests are usually performed in synthetic membranes that are assembled into large unilamellar vesicles (LUVs). However transport must be followed through bulk properties of the vesicle suspension, because LUVs are too small for individual study. An alternative approach is described whereby ion transport can be revealed and quantified through direct observation. The method employs giant unilamellar vesicles (GUVs), which are 20-60 μm in diameter and readily imaged by light microscopy. This allows characterization of individual GUVs containing transporter molecules, followed by studies of transport through fluorescence emission from encapsulated indicators. The method provides new levels of certainty and relevance, given that the GUVs are similar in size to living cells. It has been demonstrated using a highly active anion carrier, and should aid the development of compounds for treating channelopathies such as cystic fibrosis.
Keywords: anions; giant unilamellar vesicles; ion transport; membranes; supramolecular chemistry.
© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Figures




Similar articles
- Imaging Proton Transport in Giant Vesicles through Cyclic Peptide-Polymer Conjugate Nanotube Transmembrane Ion Channels.Binfield JG, Brendel JC, Cameron NR, Eissa AM, Perrier S.Binfield JG, et al.Macromol Rapid Commun. 2018 Oct;39(19):e1700831. doi: 10.1002/marc.201700831. Epub 2018 Feb 16.Macromol Rapid Commun. 2018.PMID:29450934
- Fluorescence Monitoring of Peptide Transport Pathways into Large and Giant Vesicles by Supramolecular Host-Dye Reporter Pairs.Barba-Bon A, Pan YC, Biedermann F, Guo DS, Nau WM, Hennig A.Barba-Bon A, et al.J Am Chem Soc. 2019 Dec 26;141(51):20137-20145. doi: 10.1021/jacs.9b09563. Epub 2019 Dec 2.J Am Chem Soc. 2019.PMID:31739668
- Detergent-mediated incorporation of transmembrane proteins in giant unilamellar vesicles with controlled physiological contents.Dezi M, Di Cicco A, Bassereau P, Lévy D.Dezi M, et al.Proc Natl Acad Sci U S A. 2013 Apr 30;110(18):7276-81. doi: 10.1073/pnas.1303857110. Epub 2013 Apr 15.Proc Natl Acad Sci U S A. 2013.PMID:23589883Free PMC article.
- Ion transport through lipid bilayers by synthetic ionophores: modulation of activity and selectivity.De Riccardis F, Izzo I, Montesarchio D, Tecilla P.De Riccardis F, et al.Acc Chem Res. 2013 Dec 17;46(12):2781-90. doi: 10.1021/ar4000136. Epub 2013 Mar 27.Acc Chem Res. 2013.PMID:23534613Review.
- Quantitative optical microscopy and micromanipulation studies on the lipid bilayer membranes of giant unilamellar vesicles.Bagatolli LA, Needham D.Bagatolli LA, et al.Chem Phys Lipids. 2014 Jul;181:99-120. doi: 10.1016/j.chemphyslip.2014.02.009. Epub 2014 Mar 13.Chem Phys Lipids. 2014.PMID:24632023Review.
Cited by
- Supramolecular Chemistry in the Biomembrane.Barba-Bon A, Nilam M, Hennig A.Barba-Bon A, et al.Chembiochem. 2020 Apr 1;21(7):886-910. doi: 10.1002/cbic.201900646. Epub 2020 Jan 30.Chembiochem. 2020.PMID:31803982Free PMC article.Review.
- Membrane Models and Experiments Suitable for Studies of the Cholesterol Bilayer Domains.Mardešić I, Boban Z, Subczynski WK, Raguz M.Mardešić I, et al.Membranes (Basel). 2023 Mar 10;13(3):320. doi: 10.3390/membranes13030320.Membranes (Basel). 2023.PMID:36984707Free PMC article.Review.
- Lipid vesicle-based molecular robots.Peng Z, Iwabuchi S, Izumi K, Takiguchi S, Yamaji M, Fujita S, Suzuki H, Kambara F, Fukasawa G, Cooney A, Di Michele L, Elani Y, Matsuura T, Kawano R.Peng Z, et al.Lab Chip. 2024 Feb 27;24(5):996-1029. doi: 10.1039/d3lc00860f.Lab Chip. 2024.PMID:38239102Free PMC article.Review.
- Formation of supramolecular channels by reversible unwinding-rewinding of bis(indole) double helix via ion coordination.Mondal D, Ahmad M, Dey B, Mondal A, Talukdar P.Mondal D, et al.Nat Commun. 2022 Oct 31;13(1):6507. doi: 10.1038/s41467-022-34159-y.Nat Commun. 2022.PMID:36316309Free PMC article.
- Direct Observation of Bacterial Growth in Giant Unilamellar Vesicles: A Novel Tool for Bacterial Cultures.Morita M, Katoh K, Noda N.Morita M, et al.ChemistryOpen. 2018 Aug 17;7(11):845-849. doi: 10.1002/open.201800126. eCollection 2018 Nov.ChemistryOpen. 2018.PMID:30402373Free PMC article.
References
- Hille B. Ion Channels of Excitable Membranes. Sunderland: Sinauer; 2001.
- Pressman BC. Annu. Rev. Biochem. 1976;45:501–530. - PubMed
- Davis JT, Okunola O, Quesada R. Chem. Soc. Rev. 2010;39:3843–3862. - PubMed
- Busschaert N, Gale PA. Angew. Chem. Int. Ed. 2013;52:1374–1382. - PubMed
- Angew. Chem. 2013;125
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources