Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Elsevier Science full text link Elsevier Science
Full text links

Actions

Share

Review
.2015 Sep;25(9):1470-9.
doi: 10.1016/j.euroneuro.2014.09.016. Epub 2014 Oct 23.

Novel dimensions of D3 receptor function: Focus on heterodimerisation, transactivation and allosteric modulation

Affiliations
Review

Novel dimensions of D3 receptor function: Focus on heterodimerisation, transactivation and allosteric modulation

Roberto Maggio et al. Eur Neuropsychopharmacol.2015 Sep.

Abstract

The brain׳s complexity derives not only from the way the intricate network of neurons is wired, but also by protein complexes that recognize and decode chemical information. G protein-coupled receptors (GPCRs) represent the most abundant family of proteins mediating neurotransmission in the brain, and their ability to form homo- and heteromers which amplifies the scope for synaptic communication and fine-tuning. Dopamine receptors are important drug targets and members of both the D1/D5 and D2/D3/D4 receptor families form homo- and heteromers. The present article focuses on D3 receptor homo- and heteromers, in particular, those formed in association with their D2 counterparts. We highlight the binding profiles and mechanisms of interaction with D3-D3 homomers and D3-D2 heteromers of: first, the PET ligand and potent agonist [(11)C]-(+)-PHNO; second, the novel, bitopic/allosteric dopamine D3 receptor antagonist, SB269,652; and third, diverse partial agonists like antipsychotic and aripiprazole. Molecular mechanisms of interplay between the two protomers of heteromeric D3-D2 complexes are likewise discussed: for example, "transactivation", whereby recruitment of one member of a heteromer harnesses signalling pathways is normally coupled to the other protomer. Finally, D1 receptor heteromers are also taken into consideration in deciphering the nature of interfaces required to stabilize dimeric assemblies and permit their interaction with G proteins. Improved understanding of D3 as well as D2 and D1 receptor complexes should yield important insights into their physiological roles and pathological significance, and permit the development of novel drug classes with potentially distinctive functional profiles and improved therapeutic windows.

Keywords: Antiparkinson; Antipsychotic; Aripiprazole; G-protein; Heteromerization; PHNO.

Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

PubMed Disclaimer

Similar articles

See all similar articles

Cited by

See all "Cited by" articles

Publication types

MeSH terms

Substances

LinkOut - more resources

Full text links
Elsevier Science full text link Elsevier Science
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp