Factors affecting perceptual thresholds in a suprachoroidal retinal prosthesis
- PMID:25205858
- DOI: 10.1167/iovs.14-14396
Factors affecting perceptual thresholds in a suprachoroidal retinal prosthesis
Abstract
Purpose: The suprachoroidal location for a retinal prosthesis provides advantages over other locations in terms of a simplified surgical procedure and a potentially more stable electrode-neural interface. The aim of this study was to assess the factors affecting perceptual thresholds, and to optimize stimulus parameters to achieve the lowest thresholds in patients implanted with a suprachoroidal retinal prosthesis.
Methods: Three patients with profound vision loss from retinitis pigmentosa were implanted with a suprachoroidal array. Perceptual thresholds measured on individual electrodes were analyzed as a function of stimulus (return configuration, pulse polarity, pulse width, interphase gap, and rate), electrode (area and number of ganged electrodes), and clinical (retinal thickness and electrode-retina distance) parameters.
Results: A total of 92.8% of 904 measurements made up to 680 days post implantation yielded thresholds (range, 44-436 nanocoulombs [nC]) below the safe charge limit. Thresholds were found to vary between individuals and to depend significantly on electrode-retina distance, negligibly on retinal thickness, and not on electrode area or the number of ganged electrodes. Lowest thresholds were achieved when using a monopolar return, anodic-first polarity, short pulse widths (100 μs) combined with long interphase gaps (500 μs), and high stimulation rates (≥400 pulses per second [pps]).
Conclusions: With suprachoroidal stimulation, anodic-first pulses with a monopolar return are most efficacious. To enable high rates, an appropriate combination of pulse width and interphase gap must be chosen to ensure low thresholds and electrode voltages. Electrode-retina distance needs to be monitored carefully owing to its influence on thresholds. These results inform implantable stimulator specifications for a suprachoroidal retinal prosthesis. (ClinicalTrials.gov number,NCT01603576.).
Keywords: retinal prosthesis; retinitis pigmentosa; suprachoroidal; threshold.
Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.
Similar articles
- Evaluation of stimulus parameters and electrode geometry for an effective suprachoroidal retinal prosthesis.Shivdasani MN, Luu CD, Cicione R, Fallon JB, Allen PJ, Leuenberger J, Suaning GJ, Lovell NH, Shepherd RK, Williams CE.Shivdasani MN, et al.J Neural Eng. 2010 Jun;7(3):036008. doi: 10.1088/1741-2560/7/3/036008. Epub 2010 May 18.J Neural Eng. 2010.PMID:20479521
- Visual cortex responses to single- and simultaneous multiple-electrode stimulation of the retina: implications for retinal prostheses.Shivdasani MN, Fallon JB, Luu CD, Cicione R, Allen PJ, Morley JW, Williams CE.Shivdasani MN, et al.Invest Ophthalmol Vis Sci. 2012 Sep 19;53(10):6291-300. doi: 10.1167/iovs.12-9434.Invest Ophthalmol Vis Sci. 2012.PMID:22899754
- Cortical activation following chronic passive implantation of a wide-field suprachoroidal retinal prosthesis.Villalobos J, Fallon JB, Nayagam DA, Shivdasani MN, Luu CD, Allen PJ, Shepherd RK, Williams CE.Villalobos J, et al.J Neural Eng. 2014 Aug;11(4):046017. doi: 10.1088/1741-2560/11/4/046017. Epub 2014 Jun 26.J Neural Eng. 2014.PMID:24965866
- Electrical Stimulation of the Retina to Produce Artificial Vision.Weiland JD, Walston ST, Humayun MS.Weiland JD, et al.Annu Rev Vis Sci. 2016 Oct 14;2:273-294. doi: 10.1146/annurev-vision-111815-114425.Annu Rev Vis Sci. 2016.PMID:28532361Review.
- The Argus(®) II Retinal Prosthesis System.Luo YH, da Cruz L.Luo YH, et al.Prog Retin Eye Res. 2016 Jan;50:89-107. doi: 10.1016/j.preteyeres.2015.09.003. Epub 2015 Sep 25.Prog Retin Eye Res. 2016.PMID:26404104Review.
Cited by
- Harmonization of Outcomes and Vision Endpoints in Vision Restoration Trials: Recommendations from the International HOVER Taskforce.Ayton LN, Rizzo JF 3rd, Bailey IL, Colenbrander A, Dagnelie G, Geruschat DR, Hessburg PC, McCarthy CD, Petoe MA, Rubin GS, Troyk PR; HOVER International Taskforce.Ayton LN, et al.Transl Vis Sci Technol. 2020 Jul 16;9(8):25. doi: 10.1167/tvst.9.8.25. eCollection 2020 Jul.Transl Vis Sci Technol. 2020.PMID:32864194Free PMC article.
- A Second-Generation (44-Channel) Suprachoroidal Retinal Prosthesis: Long-Term Observation of the Electrode-Tissue Interface.Titchener SA, Nayagam DAX, Kvansakul J, Kolic M, Baglin EK, Abbott CJ, McGuinness MB, Ayton LN, Luu CD, Greenstein S, Kentler WG, Shivdasani MN, Allen PJ, Petoe MA.Titchener SA, et al.Transl Vis Sci Technol. 2022 Jun 1;11(6):12. doi: 10.1167/tvst.11.6.12.Transl Vis Sci Technol. 2022.PMID:35696133Free PMC article.
- Retinal Prosthetic Approaches to Enhance Visual Perception for Blind Patients.Shim S, Eom K, Jeong J, Kim SJ.Shim S, et al.Micromachines (Basel). 2020 May 24;11(5):535. doi: 10.3390/mi11050535.Micromachines (Basel). 2020.PMID:32456341Free PMC article.Review.
- A Second-Generation (44-Channel) Suprachoroidal Retinal Prosthesis: Interim Clinical Trial Results.Petoe MA, Titchener SA, Kolic M, Kentler WG, Abbott CJ, Nayagam DAX, Baglin EK, Kvansakul J, Barnes N, Walker JG, Epp SB, Young KA, Ayton LN, Luu CD, Allen PJ; Bionics Institute and Centre for Eye Research Australia Retinal Prosthesis Consortium.Petoe MA, et al.Transl Vis Sci Technol. 2021 Aug 12;10(10):12. doi: 10.1167/tvst.10.10.12.Transl Vis Sci Technol. 2021.PMID:34581770Free PMC article.Clinical Trial.
- Persistent remodeling and neurodegeneration in late-stage retinal degeneration.Pfeiffer RL, Marc RE, Jones BW.Pfeiffer RL, et al.Prog Retin Eye Res. 2020 Jan;74:100771. doi: 10.1016/j.preteyeres.2019.07.004. Epub 2019 Jul 26.Prog Retin Eye Res. 2020.PMID:31356876Free PMC article.Review.
Publication types
MeSH terms
Associated data
Related information
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous