Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Elsevier Science full text link Elsevier Science
Full text links

Actions

Review
.2015 Jan:78:142-53.
doi: 10.1016/j.yjmcc.2014.08.015. Epub 2014 Aug 27.

Molecular identity of the mitochondrial permeability transition pore and its role in ischemia-reperfusion injury

Affiliations
Review

Molecular identity of the mitochondrial permeability transition pore and its role in ischemia-reperfusion injury

Giampaolo Morciano et al. J Mol Cell Cardiol.2015 Jan.

Abstract

The mitochondrial permeability transition is a key event in cell death. Intense research efforts have been focused on elucidating the molecular components of the mitochondrial permeability transition pore (mPTP) to improve the understanding and treatment of various pathologies, including neurodegenerative disorders, cancer and cardiac diseases. Several molecular factors have been proposed as core components of the mPTP; however, further investigation has indicated that these factors are among a wide range of regulators. Thus, the scientific community lacks a clear model of the mPTP. Here, we review the molecular factors involved in the regulation and formation of the mPTP. Furthermore, we propose that the mitochondrial ATP synthase, specifically its c subunit, is the central core component of the mPTP complex. Moreover, we discuss the involvement of the mPTP in ischemia and reperfusion as well as the results of clinical studies targeting the mPTP to ameliorate ischemia-reperfusion injury. This article is part of a Special Issue entitled "Mitochondria: From Basic Mitochondrial Biology to Cardiovascular Disease".

Keywords: Apoptosis; Cell death; Ischemia reperfusion injury; Mitochondrial permeability transition pore, MPTP; Necrosis; Permeability transition pore, PTP.

Copyright © 2014 Elsevier Ltd. All rights reserved.

PubMed Disclaimer

Publication types

MeSH terms

Substances

Grants and funding

LinkOut - more resources

Full text links
Elsevier Science full text link Elsevier Science
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp