Metabolic costs and evolutionary implications of human brain development
- PMID:25157149
- PMCID: PMC4246958
- DOI: 10.1073/pnas.1323099111
Metabolic costs and evolutionary implications of human brain development
Abstract
The high energetic costs of human brain development have been hypothesized to explain distinctive human traits, including exceptionally slow and protracted preadult growth. Although widely assumed to constrain life-history evolution, the metabolic requirements of the growing human brain are unknown. We combined previously collected PET and MRI data to calculate the human brain's glucose use from birth to adulthood, which we compare with body growth rate. We evaluate the strength of brain-body metabolic trade-offs using the ratios of brain glucose uptake to the body's resting metabolic rate (RMR) and daily energy requirements (DER) expressed in glucose-gram equivalents (glucosermr% and glucoseder%). We find that glucosermr% and glucoseder% do not peak at birth (52.5% and 59.8% of RMR, or 35.4% and 38.7% of DER, for males and females, respectively), when relative brain size is largest, but rather in childhood (66.3% and 65.0% of RMR and 43.3% and 43.8% of DER). Body-weight growth (dw/dt) and both glucosermr% and glucoseder% are strongly, inversely related: soon after birth, increases in brain glucose demand are accompanied by proportionate decreases in dw/dt. Ages of peak brain glucose demand and lowest dw/dt co-occur and subsequent developmental declines in brain metabolism are matched by proportionate increases in dw/dt until puberty. The finding that human brain glucose demands peak during childhood, and evidence that brain metabolism and body growth rate covary inversely across development, support the hypothesis that the high costs of human brain development require compensatory slowing of body growth rate.
Keywords: anthropology; diabetes; human evolution; neuroimaging; neuronal plasticity.
Conflict of interest statement
The authors declare no conflict of interest.
Figures



Comment in
- Reply to Skoyles: Decline in growth rate, not muscle mass, predicts the human childhood peak in brain metabolism.Kuzawa CW, Chugani HT, Grossman LI, Lipovich L, Muzik O, Hof PR, Wildman DE, Sherwood CC, Leonard WR, Lange N.Kuzawa CW, et al.Proc Natl Acad Sci U S A. 2014 Nov 18;111(46):E4910. doi: 10.1073/pnas.1418398111. Epub 2014 Nov 10.Proc Natl Acad Sci U S A. 2014.PMID:25385651Free PMC article.No abstract available.
- Skeletal muscle-induced hypoglycemia risk, not life history energy trade-off, links high child brain glucose use to slow body growth.Skoyles JR.Skoyles JR.Proc Natl Acad Sci U S A. 2014 Nov 18;111(46):E4909. doi: 10.1073/pnas.1417468111. Epub 2014 Nov 10.Proc Natl Acad Sci U S A. 2014.PMID:25385652Free PMC article.No abstract available.
Similar articles
- A hypothesis linking the energy demand of the brain to obesity risk.Kuzawa CW, Blair C.Kuzawa CW, et al.Proc Natl Acad Sci U S A. 2019 Jul 2;116(27):13266-13275. doi: 10.1073/pnas.1816908116. Epub 2019 Jun 17.Proc Natl Acad Sci U S A. 2019.PMID:31209026Free PMC article.
- Fluctuating asymmetry, a marker of poor growth quality, is associated with adult male metabolic rate.Longman DP, Oyama S, Cracknell J, Thompson N, Gordon D, Stock JT, Wells JCK.Longman DP, et al.Am J Phys Anthropol. 2021 Jul;175(3):646-655. doi: 10.1002/ajpa.24276. Epub 2021 Mar 25.Am J Phys Anthropol. 2021.PMID:33768527
- Carotid foramen size in the human skull tracks developmental changes in cerebral blood flow and brain metabolism.Harrington AR, Kuzawa CW, Boyer DM.Harrington AR, et al.Am J Phys Anthropol. 2019 May;169(1):161-169. doi: 10.1002/ajpa.23809. Epub 2019 Mar 1.Am J Phys Anthropol. 2019.PMID:30821356
- The Minderoo-Monaco Commission on Plastics and Human Health.Landrigan PJ, Raps H, Cropper M, Bald C, Brunner M, Canonizado EM, Charles D, Chiles TC, Donohue MJ, Enck J, Fenichel P, Fleming LE, Ferrier-Pages C, Fordham R, Gozt A, Griffin C, Hahn ME, Haryanto B, Hixson R, Ianelli H, James BD, Kumar P, Laborde A, Law KL, Martin K, Mu J, Mulders Y, Mustapha A, Niu J, Pahl S, Park Y, Pedrotti ML, Pitt JA, Ruchirawat M, Seewoo BJ, Spring M, Stegeman JJ, Suk W, Symeonides C, Takada H, Thompson RC, Vicini A, Wang Z, Whitman E, Wirth D, Wolff M, Yousuf AK, Dunlop S.Landrigan PJ, et al.Ann Glob Health. 2023 Mar 21;89(1):23. doi: 10.5334/aogh.4056. eCollection 2023.Ann Glob Health. 2023.PMID:36969097Free PMC article.Review.
- Energy expenditure and intake during puberty in healthy nonobese adolescents: a systematic review.Cheng HL, Amatoury M, Steinbeck K.Cheng HL, et al.Am J Clin Nutr. 2016 Oct;104(4):1061-1074. doi: 10.3945/ajcn.115.129205. Epub 2016 Sep 14.Am J Clin Nutr. 2016.PMID:27629054Review.
Cited by
- Adaptive protein synthesis in genetic models of copper deficiency and childhood neurodegeneration.Lane AR, Scher NE, Bhattacharjee S, Zlatic SA, Roberts AM, Gokhale A, Singleton KS, Duong DM, McKenna M, Liu WL, Baiju A, Moctezuma FGR, Tran T, Patel AA, Clayton LB, Petris MJ, Wood LB, Patgiri A, Vrailas-Mortimer AD, Cox DN, Roberts BR, Werner E, Faundez V.Lane AR, et al.bioRxiv [Preprint]. 2024 Nov 18:2024.09.09.612106. doi: 10.1101/2024.09.09.612106.bioRxiv. 2024.Update in:Mol Biol Cell. 2025 Mar 1;36(3):ar33. doi: 10.1091/mbc.E24-11-0512.PMID:39314281Free PMC article.Updated.Preprint.
- Extended parental provisioning and variation in vertebrate brain sizes.van Schaik CP, Song Z, Schuppli C, Drobniak SM, Heldstab SA, Griesser M.van Schaik CP, et al.PLoS Biol. 2023 Feb 28;21(2):e3002016. doi: 10.1371/journal.pbio.3002016. eCollection 2023 Feb.PLoS Biol. 2023.PMID:36854018Free PMC article.
- Energetics as a driver of human morphological thermal adaptation; evidence from female ultra-endurance athletes.Longman DP, Murray A, Roberts R, Oakley S, Wells JCK, Stock JT.Longman DP, et al.Evol Hum Sci. 2021 Mar 29;3:e22. doi: 10.1017/ehs.2021.17. eCollection 2021.Evol Hum Sci. 2021.PMID:37588555Free PMC article.
- Rates of ecological knowledge learning in Pemba, Tanzania: Implications for childhood evolution.Pretelli I, Borgerhoff Mulder M, McElreath R.Pretelli I, et al.Evol Hum Sci. 2022 Aug 2;4:e34. doi: 10.1017/ehs.2022.31. eCollection 2022.Evol Hum Sci. 2022.PMID:37588933Free PMC article.
- Developmental variation in regional brain iron and its relation to cognitive functions in childhood.Hect JL, Daugherty AM, Hermez KM, Thomason ME.Hect JL, et al.Dev Cogn Neurosci. 2018 Nov;34:18-26. doi: 10.1016/j.dcn.2018.05.004. Epub 2018 May 22.Dev Cogn Neurosci. 2018.PMID:29894887Free PMC article.
References
- Bogin B. Patterns of Human Growth. 2nd Ed. Cambridge, UK: Cambridge Univ Press; 1999.
- Kaplan H, Hill K, Lancaster J, Hurtado AM. A theory of human life history evolution: Diet, intelligence and longevity. Evol Anthropol. 2000;9(4):156–185.
- Schultz AH. The Life of Primates. London: Weidenfeld & Nicolson; 1969.
- Sellen D, Smay D. Relationship between subsistence and age at weaning in “preindustrial” societies. Hum Nat. 2001;12(1):47–87. - PubMed
Publication types
MeSH terms
Substances
Related information
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources