Biological cost of pyocin production during the SOS response in Pseudomonas aeruginosa
- PMID:25022851
- PMCID: PMC4135695
- DOI: 10.1128/JB.01889-14
Biological cost of pyocin production during the SOS response in Pseudomonas aeruginosa
Abstract
LexA and two structurally related regulators, PrtR and PA0906, coordinate the Pseudomonas aeruginosa SOS response. RecA-mediated autocleavage of LexA induces the expression of a protective set of genes that increase DNA damage repair and tolerance. In contrast, RecA-mediated autocleavage of PrtR induces antimicrobial pyocin production and a program that lyses cells to release the newly synthesized pyocin. Recently, PrtR-regulated genes were shown to sensitize P. aeruginosa to quinolones, antibiotics that elicit a strong SOS response. Here, we investigated the mechanisms by which PrtR-regulated genes determine antimicrobial resistance and genotoxic stress survival. We found that induction of PrtR-regulated genes lowers resistance to clinically important antibiotics and impairs the survival of bacteria exposed to one of several genotoxic agents. Two distinct mechanisms mediated these effects. Cell lysis genes that are induced following PrtR autocleavage reduced resistance to bactericidal levels of ciprofloxacin, and production of extracellular R2 pyocin was lethal to cells that initially survived UV light treatment. Although typically resistant to R2 pyocin, P. aeruginosa becomes transiently sensitive to R2 pyocin following UV light treatment, likely because of the strong downregulation of lipopolysaccharide synthesis genes that are required for resistance to R2 pyocin. Our results demonstrate that pyocin production during the P. aeruginosa SOS response carries both expected and unexpected costs.
Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Figures






Similar articles
- SOS-Independent Pyocin Production in P. aeruginosa Is Induced by XerC Recombinase Deficiency.Baggett NS, Bronson AS, Cabeen MT.Baggett NS, et al.mBio. 2021 Dec 21;12(6):e0289321. doi: 10.1128/mBio.02893-21. Epub 2021 Nov 23.mBio. 2021.PMID:34809462Free PMC article.
- Pseudomonas aeruginosa Oligoribonuclease Contributes to Tolerance to Ciprofloxacin by Regulating Pyocin Biosynthesis.Chen F, Chen G, Liu Y, Jin Y, Cheng Z, Liu Y, Yang L, Jin S, Wu W.Chen F, et al.Antimicrob Agents Chemother. 2017 Feb 23;61(3):e02256-16. doi: 10.1128/AAC.02256-16. Print 2017 Mar.Antimicrob Agents Chemother. 2017.PMID:28052848Free PMC article.
- PrtR homeostasis contributes to Pseudomonas aeruginosa pathogenesis and resistance against ciprofloxacin.Sun Z, Shi J, Liu C, Jin Y, Li K, Chen R, Jin S, Wu W.Sun Z, et al.Infect Immun. 2014 Apr;82(4):1638-47. doi: 10.1128/IAI.01388-13. Epub 2014 Feb 3.Infect Immun. 2014.PMID:24491574Free PMC article.
- The pyocins of Pseudomonas aeruginosa.Michel-Briand Y, Baysse C.Michel-Briand Y, et al.Biochimie. 2002 May-Jun;84(5-6):499-510. doi: 10.1016/s0300-9084(02)01422-0.Biochimie. 2002.PMID:12423794Review.
- SOS response as an adaptive response to DNA damage in prokaryotes.Shinagawa H.Shinagawa H.EXS. 1996;77:221-35. doi: 10.1007/978-3-0348-9088-5_14.EXS. 1996.PMID:8856977Review.
Cited by
- Clustered Regularly Interspaced Short Palindromic Repeat-Dependent, Biofilm-Specific Death of Pseudomonas aeruginosa Mediated by Increased Expression of Phage-Related Genes.Heussler GE, Cady KC, Koeppen K, Bhuju S, Stanton BA, O'Toole GA.Heussler GE, et al.mBio. 2015 May 12;6(3):e00129-15. doi: 10.1128/mBio.00129-15.mBio. 2015.PMID:25968642Free PMC article.
- Targeting Bacterial Gyrase with Cystobactamid, Fluoroquinolone, and Aminocoumarin Antibiotics Induces Distinct Molecular Signatures in Pseudomonas aeruginosa.Franke R, Overwin H, Häussler S, Brönstrup M.Franke R, et al.mSystems. 2021 Aug 31;6(4):e0061021. doi: 10.1128/mSystems.00610-21. Epub 2021 Jul 13.mSystems. 2021.PMID:34254824Free PMC article.
- A novel Queuovirinae lineage of Pseudomonas aeruginosa phages encode dPreQ0 DNA modifications with a single GA motif that provide restriction and CRISPR Cas9 protection in vitro.Olsen NS, Nielsen TK, Cui L, Dedon P, Neve H, Hansen LH, Kot W.Olsen NS, et al.Nucleic Acids Res. 2023 Sep 8;51(16):8663-8676. doi: 10.1093/nar/gkad622.Nucleic Acids Res. 2023.PMID:37503841Free PMC article.
- Biofilm Formation As a Response to Ecological Competition.Oliveira NM, Martinez-Garcia E, Xavier J, Durham WM, Kolter R, Kim W, Foster KR.Oliveira NM, et al.PLoS Biol. 2015 Jul 9;13(7):e1002191. doi: 10.1371/journal.pbio.1002191. eCollection 2015 Jul.PLoS Biol. 2015.PMID:26158271Free PMC article.
- General and condition-specific essential functions of Pseudomonas aeruginosa.Lee SA, Gallagher LA, Thongdee M, Staudinger BJ, Lippman S, Singh PK, Manoil C.Lee SA, et al.Proc Natl Acad Sci U S A. 2015 Apr 21;112(16):5189-94. doi: 10.1073/pnas.1422186112. Epub 2015 Apr 6.Proc Natl Acad Sci U S A. 2015.PMID:25848053Free PMC article.
References
- Friedberg EC, Walker GC, Siede W, Wood RD, Schultz RA, Ellenberger T. 2006. DNA repair and mutagenesis. ASM Press, Washington, DC
Publication types
MeSH terms
Substances
Related information
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources