Steroidogenesis of the testis -- new genes and pathways
- PMID:24793988
- DOI: 10.1016/j.ando.2014.03.002
Steroidogenesis of the testis -- new genes and pathways
Abstract
Defects of androgen biosynthesis cause 46,XY disorder of sexual development (DSD). All steroids are produced from cholesterol and the early steps of steroidogenesis are common to mineralocorticoid, glucocorticoid and sex steroid production. Genetic mutations in enzymes and proteins supporting the early biosynthesis pathways cause adrenal insufficiency (AI), DSD and gonadal insufficiency. The classic androgen biosynthesis defects with AI are lipoid CAH, CYP11A1 and HSD3B2 deficiencies. Deficiency of CYP17A1 rarely causes AI, and HSD17B3 or SRD5A2 deficiencies only cause 46,XY DSD and gonadal insufficiency. All androgen biosynthesis depends on 17,20 lyase activity of CYP17A1 which is supported by P450 oxidoreductase (POR) and cytochrome b5 (CYB5). Therefore 46,XY DSD with apparent 17,20 lyase deficiency may be due to mutations in CYP17A1, POR or CYB5. Illustrated by patients harboring mutations in SRD5A2, normal development of the male external genitalia depends largely on dihydrotestosterone (DHT) which is converted from circulating testicular testosterone (T) through SRD5A2 in the genital skin. In the classic androgen biosynthetic pathway, T is produced from DHEA and androstenedione/-diol in the testis. However, recently found mutations in AKR1C2/4 genes in undervirilized 46,XY individuals have established a role for a novel, alternative, backdoor pathway for fetal testicular DHT synthesis. In this pathway, which has been first elucidated for the tammar wallaby pouch young, 17-hydroxyprogesterone is converted directly to DHT by 5α-3α reductive steps without going through the androgens of the classic pathway. Enzymes AKR1C2/4 catalyse the critical 3αHSD reductive reaction which feeds 17OH-DHP into the backdoor pathway. In conclusion, androgen production in the fetal testis seems to utilize two pathways but their exact interplay remains to be elucidated.
Keywords: AKR1C2/4 genes; CYB5; CYP11A1; CYP17A1; Disorder of sexual development; Déficits en CYP11A1; Gène AKR1C2/4; HSD17B3; HSD3B2; Hyperplasie congénitale lipoide des surrénales; Lipoid congenital adrenal hyperplasia; POR; POR and CYB5 deficiencies; SRD5A2; Troubles du développement sexuel.
Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Similar articles
- Defects in androgen biosynthesis causing 46,XY disorders of sexual development.Auchus RJ, Miller WL.Auchus RJ, et al.Semin Reprod Med. 2012 Oct;30(5):417-26. doi: 10.1055/s-0032-1324726. Epub 2012 Oct 8.Semin Reprod Med. 2012.PMID:23044879Review.
- Why boys will be boys: two pathways of fetal testicular androgen biosynthesis are needed for male sexual differentiation.Flück CE, Meyer-Böni M, Pandey AV, Kempná P, Miller WL, Schoenle EJ, Biason-Lauber A.Flück CE, et al.Am J Hum Genet. 2011 Aug 12;89(2):201-18. doi: 10.1016/j.ajhg.2011.06.009. Epub 2011 Jul 28.Am J Hum Genet. 2011.PMID:21802064Free PMC article.
- Molecular genetic analysis of AKR1C2-4 and HSD17B6 genes in subjects 46,XY with hypospadias.Mares L, Vilchis F, Chávez B, Ramos L.Mares L, et al.J Pediatr Urol. 2020 Oct;16(5):689.e1-689.e12. doi: 10.1016/j.jpurol.2020.07.001. Epub 2020 Jul 10.J Pediatr Urol. 2020.PMID:32732174
- Alternative pathway androgen biosynthesis and human fetal female virilization.Reisch N, Taylor AE, Nogueira EF, Asby DJ, Dhir V, Berry A, Krone N, Auchus RJ, Shackleton CHL, Hanley NA, Arlt W.Reisch N, et al.Proc Natl Acad Sci U S A. 2019 Oct 29;116(44):22294-22299. doi: 10.1073/pnas.1906623116. Epub 2019 Oct 14.Proc Natl Acad Sci U S A. 2019.PMID:31611378Free PMC article.
- Molecular diagnostics of disorders of sexual development: an Indian survey and systems biology perspective.Nagaraja MR, Gubbala SP, Delphine Silvia CRW, Amanchy R.Nagaraja MR, et al.Syst Biol Reprod Med. 2019 Apr;65(2):105-120. doi: 10.1080/19396368.2018.1549619. Epub 2018 Dec 14.Syst Biol Reprod Med. 2019.PMID:30550360Review.
Cited by
- D-Aspartate Depletion Perturbs Steroidogenesis and Spermatogenesis in Mice.Santillo A, Falvo S, Venditti M, Di Maio A, Chieffi Baccari G, Errico F, Usiello A, Minucci S, Di Fiore MM.Santillo A, et al.Biomolecules. 2023 Mar 30;13(4):621. doi: 10.3390/biom13040621.Biomolecules. 2023.PMID:37189369Free PMC article.
- The role of miRNAs in regulating adrenal and gonadal steroidogenesis.Azhar S, Dong D, Shen WJ, Hu Z, Kraemer FB.Azhar S, et al.J Mol Endocrinol. 2020 Jan;64(1):R21-R43. doi: 10.1530/JME-19-0105.J Mol Endocrinol. 2020.PMID:31671401Free PMC article.Review.
- Potential role of mitochondria and endoplasmic reticulum in the response elicited by D-aspartate in TM4 Sertoli cells.Falvo S, Grillo G, Latino D, Chieffi Baccari G, Di Fiore MM, Venditti M, Petito G, Santillo A.Falvo S, et al.Front Cell Dev Biol. 2024 Jul 22;12:1438231. doi: 10.3389/fcell.2024.1438231. eCollection 2024.Front Cell Dev Biol. 2024.PMID:39105170Free PMC article.
- Characterization of Precursor-Dependent Steroidogenesis in Human Prostate Cancer Models.Deb S, Pham S, Ming DS, Chin MY, Adomat H, Hurtado-Coll A, Gleave ME, Guns EST.Deb S, et al.Cancers (Basel). 2018 Sep 20;10(10):343. doi: 10.3390/cancers10100343.Cancers (Basel). 2018.PMID:30241348Free PMC article.
- Preliminary Investigation on the Ameliorative Role Exerted by D-Aspartic Acid in Counteracting Ethane Dimethane Sulfonate (EDS) Toxicity in the Rat Testis.Venditti M, Romano MZ, Aniello F, Minucci S.Venditti M, et al.Animals (Basel). 2021 Jan 8;11(1):133. doi: 10.3390/ani11010133.Animals (Basel). 2021.PMID:33435542Free PMC article.
Publication types
MeSH terms
Substances
Supplementary concepts
Related information
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous