Comparative genomics of flatworms (platyhelminthes) reveals shared genomic features of ecto- and endoparastic neodermata
- PMID:24732282
- PMCID: PMC4040987
- DOI: 10.1093/gbe/evu078
Comparative genomics of flatworms (platyhelminthes) reveals shared genomic features of ecto- and endoparastic neodermata
Abstract
The ectoparasitic Monogenea comprise a major part of the obligate parasitic flatworm diversity. Although genomic adaptations to parasitism have been studied in the endoparasitic tapeworms (Cestoda) and flukes (Trematoda), no representative of the Monogenea has been investigated yet. We present the high-quality draft genome of Gyrodactylus salaris, an economically important monogenean ectoparasite of wild Atlantic salmon (Salmo salar). A total of 15,488 gene models were identified, of which 7,102 were functionally annotated. The controversial phylogenetic relationships within the obligate parasitic Neodermata were resolved in a phylogenomic analysis using 1,719 gene models (alignment length of >500,000 amino acids) for a set of 16 metazoan taxa. The Monogenea were found basal to the Cestoda and Trematoda, which implies ectoparasitism being plesiomorphic within the Neodermata and strongly supports a common origin of complex life cycles. Comparative analysis of seven parasitic flatworm genomes identified shared genomic features for the ecto- and endoparasitic lineages, such as a substantial reduction of the core bilaterian gene complement, including the homeodomain-containing genes, and a loss of the piwi and vasa genes, which are considered essential for animal development. Furthermore, the shared loss of functional fatty acid biosynthesis pathways and the absence of peroxisomes, the latter organelles presumed ubiquitous in eukaryotes except for parasitic protozoans, were inferred. The draft genome of G. salaris opens for future in-depth analyses of pathogenicity and host specificity of poorly characterized G. salaris strains, and will enhance studies addressing the genomics of host-parasite interactions and speciation in the highly diverse monogenean flatworms.
Keywords: Gyrodactylus salaris; draft genome; flatworms; genomic adaptations; parasitism; phylogenomics.
Figures




Similar articles
- A common origin of complex life cycles in parasitic flatworms: evidence from the complete mitochondrial genome of Microcotyle sebastis (Monogenea: Platyhelminthes).Park JK, Kim KH, Kang S, Kim W, Eom KS, Littlewood DT.Park JK, et al.BMC Evol Biol. 2007 Feb 2;7:11. doi: 10.1186/1471-2148-7-11.BMC Evol Biol. 2007.PMID:17270057Free PMC article.
- Substantial loss of conserved and gain of novel MicroRNA families in flatworms.Fromm B, Worren MM, Hahn C, Hovig E, Bachmann L.Fromm B, et al.Mol Biol Evol. 2013 Dec;30(12):2619-28. doi: 10.1093/molbev/mst155. Epub 2013 Sep 11.Mol Biol Evol. 2013.PMID:24025793Free PMC article.
- Initial steps of speciation by geographic isolation and host switch in salmonid pathogen Gyrodactylus salaris (Monogenea: Gyrodactylidae).Meinilä M, Kuusela J, Zietara MS, Lumme J.Meinilä M, et al.Int J Parasitol. 2004 Mar 29;34(4):515-26. doi: 10.1016/j.ijpara.2003.12.002.Int J Parasitol. 2004.PMID:15013741
- [The influence of Janicki cercomer theory on the development of platyhelminthes systematics and evolution investigations].Pojmańska T.Pojmańska T.Wiad Parazytol. 2005;51(4):345-58.Wiad Parazytol. 2005.PMID:16913510Review.Polish.
- Constraining the Deep Origin of Parasitic Flatworms and Host-Interactions with Fossil Evidence.De Baets K, Dentzien-Dias P, Upeniece I, Verneau O, Donoghue PC.De Baets K, et al.Adv Parasitol. 2015;90:93-135. doi: 10.1016/bs.apar.2015.06.002. Epub 2015 Jul 17.Adv Parasitol. 2015.PMID:26597066Review.
Cited by
- Reinforcing the egg-timer: recruitment of novel lophotrochozoa homeobox genes to early and late development in the pacific oyster.Paps J, Xu F, Zhang G, Holland PW.Paps J, et al.Genome Biol Evol. 2015 Jan 27;7(3):677-88. doi: 10.1093/gbe/evv018.Genome Biol Evol. 2015.PMID:25631164Free PMC article.
- Shedding light on the expansion and diversification of the Cdc48 protein family during the rise of the eukaryotic cell.Kienle N, Kloepper TH, Fasshauer D.Kienle N, et al.BMC Evol Biol. 2016 Oct 18;16(1):215. doi: 10.1186/s12862-016-0790-1.BMC Evol Biol. 2016.PMID:27756227Free PMC article.
- Flatworm-specific transcriptional regulators promote the specification of tegumental progenitors inSchistosoma mansoni.Wendt GR, Collins JN, Pei J, Pearson MS, Bennett HM, Loukas A, Berriman M, Grishin NV, Collins JJ 3rd.Wendt GR, et al.Elife. 2018 Mar 20;7:e33221. doi: 10.7554/eLife.33221.Elife. 2018.PMID:29557781Free PMC article.
- Nuclear genomic signals of the 'microturbellarian' roots of platyhelminth evolutionary innovation.Laumer CE, Hejnol A, Giribet G.Laumer CE, et al.Elife. 2015 Mar 12;4:e05503. doi: 10.7554/eLife.05503.Elife. 2015.PMID:25764302Free PMC article.
- Revision ofGyrodactylus salaris phylogeny inspired by new evidence for Eemian crossing between lineages living on grayling in Baltic and White sea basins.Mieszkowska A, Górniak M, Jurczak-Kurek A, Ziętara MS.Mieszkowska A, et al.PeerJ. 2018 Jul 6;6:e5167. doi: 10.7717/peerj.5167. eCollection 2018.PeerJ. 2018.PMID:30083435Free PMC article.
References
- Baguna J, Riutort M. Molecular phylogeny of the Platyhelminthes. Can J Zool. 2004;82:168–193.
- Bakke TA, Cable J, Harris PD. The biology of gyrodactylid monogeneans: the “Russian-doll killers.”. Adv Parasitol. 2007;64:161–376. - PubMed
Publication types
MeSH terms
Substances
Related information
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases