Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Public Library of Science full text link Public Library of Science Free PMC article
Full text links

Actions

Share

.2014 Apr 7;9(4):e93190.
doi: 10.1371/journal.pone.0093190. eCollection 2014.

Small theropod teeth from the Late Cretaceous of the San Juan Basin, northwestern New Mexico and their implications for understanding latest Cretaceous dinosaur evolution

Affiliations

Small theropod teeth from the Late Cretaceous of the San Juan Basin, northwestern New Mexico and their implications for understanding latest Cretaceous dinosaur evolution

Thomas E Williamson et al. PLoS One..

Abstract

Studying the evolution and biogeographic distribution of dinosaurs during the latest Cretaceous is critical for better understanding the end-Cretaceous extinction event that killed off all non-avian dinosaurs. Western North America contains among the best records of Late Cretaceous terrestrial vertebrates in the world, but is biased against small-bodied dinosaurs. Isolated teeth are the primary evidence for understanding the diversity and evolution of small-bodied theropod dinosaurs during the Late Cretaceous, but few such specimens have been well documented from outside of the northern Rockies, making it difficult to assess Late Cretaceous dinosaur diversity and biogeographic patterns. We describe small theropod teeth from the San Juan Basin of northwestern New Mexico. These specimens were collected from strata spanning Santonian - Maastrichtian. We grouped isolated theropod teeth into several morphotypes, which we assigned to higher-level theropod clades based on possession of phylogenetic synapomorphies. We then used principal components analysis and discriminant function analyses to gauge whether the San Juan Basin teeth overlap with, or are quantitatively distinct from, similar tooth morphotypes from other geographic areas. The San Juan Basin contains a diverse record of small theropods. Late Campanian assemblages differ from approximately coeval assemblages of the northern Rockies in being less diverse with only rare representatives of troodontids and a Dromaeosaurus-like taxon. We also provide evidence that erect and recurved morphs of a Richardoestesia-like taxon represent a single heterodont species. A late Maastrichtian assemblage is dominated by a distinct troodontid. The differences between northern and southern faunas based on isolated theropod teeth provide evidence for provinciality in the late Campanian and the late Maastrichtian of North America. However, there is no indication that major components of small-bodied theropod diversity were lost during the Maastrichtian in New Mexico. The same pattern seen in northern faunas, which may provide evidence for an abrupt dinosaur extinction.

PubMed Disclaimer

Conflict of interest statement

Competing Interests:The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Map of New Mexico showing the location of the locales where small theropod teeth were collected.
Figure 2
Figure 2. Stratigraphic distribution of Late Cretaceous small theropod teeth of New Mexico.
1, Hosta Tongue of the Point Lookout Sandstone (L-297); 2, Allison Member, Menefee Formation (L-3034); 3, Fossil Forest Member, Fruitland Formation (L-1882, 3117, 4062, 4063, 4256, 4276, 4718, 6266) and Hunter Wash Member (L-1708, 3490), Farmington Sandstone Member (), and De-na-zin Member (L-1610, 3228, 3532, 4722), Kirtland Formation; 4, Naashoibito Member (L-4005). Time scale is after Gradstein et al. .
Figure 3
Figure 3. Principal components analysis of Late Cretaceous small theropod teeth based on data in the Supplementary Information (Appendices S1, S2).
A, Full PCA of a dataset including small theropod teeth compiled by Larson and Currie from several Late Cretaceous locales of western North America and specimens from the San Juan Basin, New Mexico; B, Simplified version of the PCA plot depicting only small theropod teeth from the San Juan Basin, New Mexico, for clarity (this is not based on a separate analysis, but is the same as Plot A but with the non-San Juan Basin specimens not shown). Summary statistics (e.g., eigenvalues and PC coefficients) are given in Appendix S2.
Figure 4
Figure 4. Small Tyrannosauroidea teeth from the San Juan Basin, New Mexico.
A–K, teeth of cf. Tyrannosauroidea from the Santonian Hosta Tongue, Point Lookout Sandstone. A–E, NMMNH P-27484, in labial (A), labial side of distal carina (B), lingual (C), basal (D), and mesial (E) views; F–K, NMMNH P-27485, lingual side of mesial carina (F), lingual (G), labial side of distal carina (H), labial (I), basal (J), and mesial (K) views. L–S, small tyrannosauroid teeth from the upper Campanian De-na-zin Member, Kirtland Formation. L–M, NMMNH P-33903 two associated shed teeth in lingual (L) and labial (M) views; N–S, NMMNH P-27280, lingual side of mesial carina (N), lingual (O), lingual side of distal carina (P), labial (Q), basal (R), and mesial (S) views; T–Y, small tyrannosauroid teeth from the upper Maastrichtian Naashoibito Member, Kirtland Formation, NMMNH P-32567, lingual (T), labial side of distal carina (U), labial (V), basal (W), labial side of mesial carina (X), and mesial (Y) views. The scale bar below each image is 1 mm long.
Figure 5
Figure 5. Dromaeosauridae Morphotype A.
A–G, tooth of cf. Dromaeosauridae Morphotype A (NMMNH P-27481) from the Hosta Tongue, Point Lookout Sandstone showing lingual side of distal carina (A), lingual (B), lingual side mesial carina (C); labial (D), basal (E), labial side of distal carina (F), and mesial (G) views. H–J, tooth of Dromaeosauridae Morphotype A (NMMNH P-25054) from the Allison Member, Menefee Formation showing labial (H), labial view of distal carina (I), and lingual (J) views. K–O, tooth (NMMNH P-66896) from the Fossil Forest Member, Fruitland Formation showing lingual view of mesial carina (K), lingual (L), lingual view of distal carina (M), labial (N), and basal (O) views. P–S, tooth (NMMNH P-30003) from the Fossil Forest Member, Fruitland Formation showing lingual (P), lingual side of distal carina (Q), labial (R), and basal (S) views. T–X, tooth (NMMNH P-32814) from the Naashoibito Member, Kirtland Formation showing lingual side of distal carina (T), lingual (U), basal (V), lingual side of mesial carina (W), and labial (X) views. The scale bar below each image is 1 mm long.
Figure 6
Figure 6. Dromaeosauridae Morphotype B (NMMNH P-33148) from the Hunter Wash Member, Kirtland Formation showing lingual (A), lingual side of distal carina (B), distal side of distal carina (C), labial (D), and basal (E) views.
The scale bar below each image is 1
Figure 7
Figure 7. Troodontidae genus and species indeterminate.
A–D, tooth (KUVP 96932) from the Fossil Forest Member, Fruitland Formation showing labial (A), lingual (B), mesial (C), and distal (D) views; E–J, tooth (NMMNH P-68395) from the De-na-zin Member, Kirtland Formation showing labial side of mesial carina (E), labial (F), labial side of distal carina (G), labial (H), basal (I), and labial side of mesial carina (J) views; K–O, tooth (NMMNH P-32772) from the Naashoibito Member, Kirtland Formation showing lingual (K), distal (L), lingual (M), lingual side of distal carina, labial (N), and basal (O) views; P–R, tooth (NMMNH P-33521) from the Naashoibito Member, Kirtland Formation showing lingual (P), labial (Q), and basal (R) views; S–T, tooth (NMMNH P-33520) from the Naashoibito Member, Kirtland Formation showing labial (S) and lingual (T) views; U–W, tooth (NMMNH P-22566) from the Naashoibito Member, Kirtland Formation showing labial (U), lingual (V), and basal (W) views; X–Y, tooth (NMMNH P-33901) from the Naashoibito Member, Kirtland Formation showing labial (X) and lingual (Y) views. The scale bar below each image is 1 mm long.
Figure 8
Figure 8. Cf.Richardoestesia spp. from the San Juan Basin, New Mexico.
A–D, cf.Richardoestesia sp. tooth (NMMNH P-52503) from the Fruitland Formation showing labial (A), labial side of distal carina (B), lingual (C), and basal (D) views; E–J, cf.R. gilmorei tooth (NMMNH P-33482) showing lingual side of distal carina (E), lingual (F), lingual side of mesial carnia (G), labial (H), basal (I) and lingual side of distal carina (J) views; K–P, tooth (NMMNH P-32753) showing labial (K), labial side of distal carina, (L), lingual side of distal carina (M), lingual (N), basal (O), lingual side of mesial carina (P) views. The scale bar below each image is 1 mm long.
Figure 9
Figure 9. “Paronychodon” and unidentified theropod teeth.
A–C, tooth of “Paronychodon” (NMMNH P-30233) showing lingual (A), labial (B), and basal (C) views; D–F, tooth of “Paronychodon” (NMMNH P-30218), showing lingual (D), labial (E), and basal (F) views; G–I, tooth of unidentified theropod (NMMNH P-30276) showing lingual (G), labial (H), and basal (I) views; J–L, tooth of unidentified theropod (NMMNH P-53360) showing lingual (J), labial (K), and basal (L) views; M–O, tooth of unidentified theropod (NMMNH P-38424) showing labial (M), lingual (N), and basal (O) views. The scale bar below each image is 1 mm long.
See this image and copyright information in PMC

Similar articles

See all similar articles

Cited by

See all "Cited by" articles

References

    1. Brusatte SL, Butler RJ, Prieto-Marquez A, Norell MA (2012) Dinosaur morphological diversity and the end-Cretaceous extinction. Nat Commun 3: 804. - PubMed
    1. Barrett PM, McGowan AJ, Page V (2009) Dinosaur diversity and the rock record. Proceedings of the Royal Society B: Biological Sciences 276: 2667–2674. - PMC - PubMed
    1. Fastovsky DE, Sheehan PM (2005) The extinction of the dinosaurs in North America; reply. GSA Today 15.
    1. Mitchell JS, Roopnarine PD, Angielczyk KD (2012) Late Cretaceous restructuring of terrestrial communities facilitated the end-Cretaceous mass extinction in North America. Proceedings of the National Academy of Sciences 109: 18857–18861. - PMC - PubMed
    1. Upchurch GR Jr, Mannion PD, Benson RBJ, Butler PM, Carrano MT (2011) Geological and anthropogenic controls on the sampling of the terrestrial fossil record: a case study from the Dinosauria. Geological Society of London Special Publication 358: 209–240.

Publication types

MeSH terms

Grants and funding

National Science Foundation, grants EAR 0207750 to TEW and EAR 1325544 to TEW and SLB provided support. Bureau of Land Management (BLM) Challenge Cost Share grants to TEW and a BLM National Landscapes Conservation System grant provided support to TEW and SLB. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

LinkOut - more resources

Full text links
Public Library of Science full text link Public Library of Science Free PMC article
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp