Universal computing by DNA origami robots in a living animal
- PMID:24705510
- PMCID: PMC4012984
- DOI: 10.1038/nnano.2014.58
Universal computing by DNA origami robots in a living animal
Abstract
Biological systems are collections of discrete molecular objects that move around and collide with each other. Cells carry out elaborate processes by precisely controlling these collisions, but developing artificial machines that can interface with and control such interactions remains a significant challenge. DNA is a natural substrate for computing and has been used to implement a diverse set of mathematical problems, logic circuits and robotics. The molecule also interfaces naturally with living systems, and different forms of DNA-based biocomputing have already been demonstrated. Here, we show that DNA origami can be used to fabricate nanoscale robots that are capable of dynamically interacting with each other in a living animal. The interactions generate logical outputs, which are relayed to switch molecular payloads on or off. As a proof of principle, we use the system to create architectures that emulate various logic gates (AND, OR, XOR, NAND, NOT, CNOT and a half adder). Following an ex vivo prototyping phase, we successfully used the DNA origami robots in living cockroaches (Blaberus discoidalis) to control a molecule that targets their cells.
Figures




Similar articles
- Thought-Controlled Nanoscale Robots in a Living Host.Arnon S, Dahan N, Koren A, Radiano O, Ronen M, Yannay T, Giron J, Ben-Ami L, Amir Y, Hel-Or Y, Friedman D, Bachelet I.Arnon S, et al.PLoS One. 2016 Aug 15;11(8):e0161227. doi: 10.1371/journal.pone.0161227. eCollection 2016.PLoS One. 2016.PMID:27525806Free PMC article.
- Molecular robots with sensors and intelligence.Hagiya M, Konagaya A, Kobayashi S, Saito H, Murata S.Hagiya M, et al.Acc Chem Res. 2014 Jun 17;47(6):1681-90. doi: 10.1021/ar400318d. Epub 2014 Jun 6.Acc Chem Res. 2014.PMID:24905779
- Dynamically NAND gate system on DNA origami template.Tang Z, Yin ZX, Sun X, Cui JZ, Yang J, Wang RS.Tang Z, et al.Comput Biol Med. 2019 Jun;109:112-120. doi: 10.1016/j.compbiomed.2019.04.026. Epub 2019 Apr 24.Comput Biol Med. 2019.PMID:31054386
- Nucleic Acid Databases and Molecular-Scale Computing.Song X, Reif J.Song X, et al.ACS Nano. 2019 Jun 25;13(6):6256-6268. doi: 10.1021/acsnano.9b02562. Epub 2019 May 24.ACS Nano. 2019.PMID:31117381Review.
- DNA Origami Nanomachines.Endo M, Sugiyama H.Endo M, et al.Molecules. 2018 Jul 18;23(7):1766. doi: 10.3390/molecules23071766.Molecules. 2018.PMID:30022011Free PMC article.Review.
Cited by
- DNA rendering of polyhedral meshes at the nanoscale.Benson E, Mohammed A, Gardell J, Masich S, Czeizler E, Orponen P, Högberg B.Benson E, et al.Nature. 2015 Jul 23;523(7561):441-4. doi: 10.1038/nature14586.Nature. 2015.PMID:26201596
- DNA strand displacement based computational systems and their applications.Chen C, Wen J, Wen Z, Song S, Shi X.Chen C, et al.Front Genet. 2023 Feb 22;14:1120791. doi: 10.3389/fgene.2023.1120791. eCollection 2023.Front Genet. 2023.PMID:36911397Free PMC article.Review.
- Single molecule analysis of structural fluctuations in DNA nanostructures.Jepsen MDE , Sørensen RS , Maffeo C , Aksimentiev A , Kjems J , Birkedal V .Jepsen MDE , et al.Nanoscale. 2019 Oct 10;11(39):18475-18482. doi: 10.1039/c9nr03826d.Nanoscale. 2019.PMID:31577314Free PMC article.
- Synthesizing Configurable Biochemical Implementation of Linear Systems from Their Transfer Function Specifications.Chiu TY, Chiang HJ, Huang RY, Jiang JH, Fages F.Chiu TY, et al.PLoS One. 2015 Sep 9;10(9):e0137442. doi: 10.1371/journal.pone.0137442. eCollection 2015.PLoS One. 2015.PMID:26352855Free PMC article.
- DNA Transformations for Diagnosis and Therapy.Ahn SY, Liu J, Vellampatti S, Wu Y, Um SH.Ahn SY, et al.Adv Funct Mater. 2021 Mar 17;31(12):2008279. doi: 10.1002/adfm.202008279. Epub 2020 Dec 27.Adv Funct Mater. 2021.PMID:33613148Free PMC article.Review.
References
- Adleman LM. Molecular computation of solutions to combinatorial problems. Science. 1994;266:1021–1024. - PubMed
- Braich RS, Chelyapov N, Johnson C, Rothemund PW, Adleman L. Solution of a 20-variable 3-SAT problem on a DNA computer. Science. 2002;296:499–502. - PubMed
- Qian L, Winfree E, Bruck J. Neural network computation with DNA strand displacement cascades. Nature. 2011;475:368–372. - PubMed
- Seelig G, Soloveichik D, Zhang DY, Winfree E. Enzyme-free nucleic acid logic circuits. Science. 2006;314:1585–1588. - PubMed
- Stojanovic MN, Mitchell TE, Stefanovic D. Deoxyribozyme-based logic gates. J. Am. Chem. Soc. 2002;124:3555–3561. - PubMed
Publication types
MeSH terms
Substances
Related information
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials