Human birth seasonality: latitudinal gradient and interplay with childhood disease dynamics
- PMID:24695423
- PMCID: PMC3996592
- DOI: 10.1098/rspb.2013.2438
Human birth seasonality: latitudinal gradient and interplay with childhood disease dynamics
Abstract
More than a century of ecological studies have demonstrated the importance of demography in shaping spatial and temporal variation in population dynamics. Surprisingly, the impact of seasonal recruitment on infectious disease systems has received much less attention. Here, we present data encompassing 78 years of monthly natality in the USA, and reveal pronounced seasonality in birth rates, with geographical and temporal variation in both the peak birth timing and amplitude. The timing of annual birth pulses followed a latitudinal gradient, with northern states exhibiting spring/summer peaks and southern states exhibiting autumn peaks, a pattern we also observed throughout the Northern Hemisphere. Additionally, the amplitude of United States birth seasonality was more than twofold greater in southern states versus those in the north. Next, we examined the dynamical impact of birth seasonality on childhood disease incidence, using a mechanistic model of measles. Birth seasonality was found to have the potential to alter the magnitude and periodicity of epidemics, with the effect dependent on both birth peak timing and amplitude. In a simulation study, we fitted an susceptible-exposed-infected-recovered model to simulated data, and demonstrated that ignoring birth seasonality can bias the estimation of critical epidemiological parameters. Finally, we carried out statistical inference using historical measles incidence data from New York City. Our analyses did not identify the predicted systematic biases in parameter estimates. This may be owing to the well-known frequency-locking between measles epidemics and seasonal transmission rates, or may arise from substantial uncertainty in multiple model parameters and estimation stochasticity.
Keywords: birth; disease; latitude; measles; seasonality.
Figures





Similar articles
- Impact of birth seasonality on dynamics of acute immunizing infections in Sub-Saharan Africa.Dorélien AM, Ballesteros S, Grenfell BT.Dorélien AM, et al.PLoS One. 2013 Oct 18;8(10):e75806. doi: 10.1371/journal.pone.0075806. eCollection 2013.PLoS One. 2013.PMID:24204580Free PMC article.
- Decreasing stochasticity through enhanced seasonality in measles epidemics.Mantilla-Beniers NB, Bjørnstad ON, Grenfell BT, Rohani P.Mantilla-Beniers NB, et al.J R Soc Interface. 2010 May 6;7(46):727-39. doi: 10.1098/rsif.2009.0317. Epub 2009 Oct 14.J R Soc Interface. 2010.PMID:19828508Free PMC article.
- A simple model for complex dynamical transitions in epidemics.Earn DJ, Rohani P, Bolker BM, Grenfell BT.Earn DJ, et al.Science. 2000 Jan 28;287(5453):667-70. doi: 10.1126/science.287.5453.667.Science. 2000.PMID:10650003
- Temperature and the seasonality of births.Lam DA, Miron JA.Lam DA, et al.Adv Exp Med Biol. 1991;286:73-88. doi: 10.1007/978-1-4684-5913-5_7.Adv Exp Med Biol. 1991.PMID:2042520Review.
- [Seasonality of birth in schizophrenia patients. Literature review].Bembenek A.Bembenek A.Psychiatr Pol. 2005 Mar-Apr;39(2):259-70.Psychiatr Pol. 2005.PMID:15881621Review.Polish.
Cited by
- Risk, sanctions and norm change: the formation and decay of social distancing norms.Vriens E, Andrighetto G, Tummolini L.Vriens E, et al.Philos Trans R Soc Lond B Biol Sci. 2024 Mar 11;379(1897):20230035. doi: 10.1098/rstb.2023.0035. Epub 2024 Jan 22.Philos Trans R Soc Lond B Biol Sci. 2024.PMID:38244600Free PMC article.
- Invariant predictions of epidemic patterns from radically different forms of seasonal forcing.Papst I, Earn DJD.Papst I, et al.J R Soc Interface. 2019 Jul 26;16(156):20190202. doi: 10.1098/rsif.2019.0202. Epub 2019 Jul 31.J R Soc Interface. 2019.PMID:31362618Free PMC article.
- MERS-CoV spillover at the camel-human interface.Dudas G, Carvalho LM, Rambaut A, Bedford T.Dudas G, et al.Elife. 2018 Jan 16;7:e31257. doi: 10.7554/eLife.31257.Elife. 2018.PMID:29336306Free PMC article.
- Quantifying seasonal population fluxes driving rubella transmission dynamics using mobile phone data.Wesolowski A, Metcalf CJ, Eagle N, Kombich J, Grenfell BT, Bjørnstad ON, Lessler J, Tatem AJ, Buckee CO.Wesolowski A, et al.Proc Natl Acad Sci U S A. 2015 Sep 1;112(35):11114-9. doi: 10.1073/pnas.1423542112. Epub 2015 Aug 17.Proc Natl Acad Sci U S A. 2015.PMID:26283349Free PMC article.
- Panel Data Analysis via Mechanistic Models.Bretó C, Ionides EL, King AA.Bretó C, et al.J Am Stat Assoc. 2019 Jun 7;115(531):1178-1188. doi: 10.1080/01621459.2019.1604367.J Am Stat Assoc. 2019.PMID:32905476Free PMC article.
References
- Soper HE. 1929. The interpretation of periodicity in disease prevalence. J. R. Stat. Soc. 92, 34–73 (doi:10.2307/2341437) - DOI
- London WP, Yorke JA. 1973. Recurrent outbreaks of measles, chickenpox and mumps. I. Seasonal variation in contact rates. Am. J. Epidemiol. 98, 453–468 - PubMed
- Fine PE, Clarkson JA. 1986. Seasonal influences on pertussis. Int. J. Epidemiol. 15, 237–247 (doi:10.1093/ije/15.2.237) - DOI - PubMed
- Rohani P, Keeling MJ, Grenfell BT. 2002. The interplay between determinism and stochasticity in childhood diseases. Am. Nat. 159, 469–481 (doi:10.1086/339467) - DOI - PubMed
- Metcalf CJE, Bjørnstad ON, Grenfell BT, Andreasen V. 2009. Seasonality and comparative dynamics of six childhood infections in pre-vaccination Copenhagen. Proc. R. Soc. B 276, 4111–4118 (doi:10.1098/rspb.2009.1058) - DOI - PMC - PubMed
Publication types
MeSH terms
Related information
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical