Functional organization of a multimodular bacterial chemosensory apparatus
- PMID:24603697
- PMCID: PMC3945109
- DOI: 10.1371/journal.pgen.1004164
Functional organization of a multimodular bacterial chemosensory apparatus
Abstract
Chemosensory systems (CSS) are complex regulatory pathways capable of perceiving external signals and translating them into different cellular behaviors such as motility and development. In the δ-proteobacterium Myxococcus xanthus, chemosensing allows groups of cells to orient themselves and aggregate into specialized multicellular biofilms termed fruiting bodies. M. xanthus contains eight predicted CSS and 21 chemoreceptors. In this work, we systematically deleted genes encoding components of each CSS and chemoreceptors and determined their effects on M. xanthus social behaviors. Then, to understand how the 21 chemoreceptors are distributed among the eight CSS, we examined their phylogenetic distribution, genomic organization and subcellular localization. We found that, in vivo, receptors belonging to the same phylogenetic group colocalize and interact with CSS components of the respective phylogenetic group. Finally, we identified a large chemosensory module formed by three interconnected CSS and multiple chemoreceptors and showed that complex behaviors such as cell group motility and biofilm formation require regulatory apparatus composed of multiple interconnected Che-like systems.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures








Similar articles
- Chemosensory pathways, motility and development in Myxococcus xanthus.Zusman DR, Scott AE, Yang Z, Kirby JR.Zusman DR, et al.Nat Rev Microbiol. 2007 Nov;5(11):862-72. doi: 10.1038/nrmicro1770.Nat Rev Microbiol. 2007.PMID:17922045Review.
- Phenotypic analyses of frz and dif double mutants of Myxococcus xanthus.Shi W, Yang Z, Sun H, Lancero H, Tong L.Shi W, et al.FEMS Microbiol Lett. 2000 Nov 15;192(2):211-5. doi: 10.1111/j.1574-6968.2000.tb09384.x.FEMS Microbiol Lett. 2000.PMID:11064197
- MglC, a Paralog of Myxococcus xanthus GTPase-Activating Protein MglB, Plays a Divergent Role in Motility Regulation.McLoon AL, Wuichet K, Häsler M, Keilberg D, Szadkowski D, Søgaard-Andersen L.McLoon AL, et al.J Bacteriol. 2015 Nov 16;198(3):510-20. doi: 10.1128/JB.00548-15. Print 2016 Feb 1.J Bacteriol. 2015.PMID:26574508Free PMC article.
- Chemosensory signaling controls motility and subcellular polarity in Myxococcus xanthus.Kaimer C, Berleman JE, Zusman DR.Kaimer C, et al.Curr Opin Microbiol. 2012 Dec;15(6):751-7. doi: 10.1016/j.mib.2012.10.005. Epub 2012 Nov 8.Curr Opin Microbiol. 2012.PMID:23142584Free PMC article.Review.
- Regulations governing the multicellular lifestyle of Myxococcus xanthus.Mercier R, Mignot T.Mercier R, et al.Curr Opin Microbiol. 2016 Dec;34:104-110. doi: 10.1016/j.mib.2016.08.009. Epub 2016 Sep 17.Curr Opin Microbiol. 2016.PMID:27648756Review.
Cited by
- Myxobacteria: Moving, Killing, Feeding, and Surviving Together.Muñoz-Dorado J, Marcos-Torres FJ, García-Bravo E, Moraleda-Muñoz A, Pérez J.Muñoz-Dorado J, et al.Front Microbiol. 2016 May 26;7:781. doi: 10.3389/fmicb.2016.00781. eCollection 2016.Front Microbiol. 2016.PMID:27303375Free PMC article.Review.
- Modulation of bacterial multicellularity via spatio-specific polysaccharide secretion.Islam ST, Vergara Alvarez I, Saïdi F, Guiseppi A, Vinogradov E, Sharma G, Espinosa L, Morrone C, Brasseur G, Guillemot JF, Benarouche A, Bridot JL, Ravicoularamin G, Cagna A, Gauthier C, Singer M, Fierobe HP, Mignot T, Mauriello EMF.Islam ST, et al.PLoS Biol. 2020 Jun 9;18(6):e3000728. doi: 10.1371/journal.pbio.3000728. eCollection 2020 Jun.PLoS Biol. 2020.PMID:32516311Free PMC article.
- Diversity of bacterial chemosensory systems.Gumerov VM, Andrianova EP, Zhulin IB.Gumerov VM, et al.Curr Opin Microbiol. 2021 Jun;61:42-50. doi: 10.1016/j.mib.2021.01.016. Epub 2021 Mar 5.Curr Opin Microbiol. 2021.PMID:33684668Free PMC article.Review.
- Data-driven modeling reveals cell behaviors controlling self-organization duringMyxococcus xanthus development.Cotter CR, Schüttler HB, Igoshin OA, Shimkets LJ.Cotter CR, et al.Proc Natl Acad Sci U S A. 2017 Jun 6;114(23):E4592-E4601. doi: 10.1073/pnas.1620981114. Epub 2017 May 22.Proc Natl Acad Sci U S A. 2017.PMID:28533367Free PMC article.
- A divergent CheW confers plasticity to nucleoid-associated chemosensory arrays.Guiseppi A, Vicente JJ, Herrou J, Byrne D, Barneoud A, Moine A, Espinosa L, Basse MJ, Molle V, Mignot T, Roche P, Mauriello EMF.Guiseppi A, et al.PLoS Genet. 2019 Dec 20;15(12):e1008533. doi: 10.1371/journal.pgen.1008533. eCollection 2019 Dec.PLoS Genet. 2019.PMID:31860666Free PMC article.
References
- Wuichet K, Zhulin IB (2010) Origins and diversification of a complex signal transduction system in prokaryotes. Sci Signal 3: ra50 doi:10.1126/scisignal.2000724 - DOI - PMC - PubMed
- Porter SL, Wadhams GH, Armitage JP (2011) Signal processing in complex chemotaxis pathways. Nat Rev Microbiol 9: 153–165 doi:10.1038/nrmicro2505 - DOI - PubMed
- Roberts MAJ, Papachristodoulou A, Armitage JP (2010) Adaptation and control circuits in bacterial chemotaxis. Biochem Soc Trans 38: 1265–1269 doi:10.1042/BST0381265 - DOI - PubMed
- Sourjik V, Berg HC (2002) Binding of the Escherichia coli response regulator CheY to its target measured in vivo by fluorescence resonance energy transfer. Proc Natl Acad Sci USA 99: 12669–12674 doi:10.1073/pnas.192463199 - DOI - PMC - PubMed
- Kirby JR (2009) Chemotaxis-Like Regulatory Systems: Unique Roles in Diverse Bacteria. Annual Review of Microbiology 63: 45–59 doi:10.1146/annurev.micro.091208.073221 - DOI - PubMed
Publication types
MeSH terms
Related information
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources