Functional organization of a multimodular bacterial chemosensory apparatus
- PMID:24603697
- PMCID: PMC3945109
- DOI: 10.1371/journal.pgen.1004164
Functional organization of a multimodular bacterial chemosensory apparatus
Abstract
Chemosensory systems (CSS) are complex regulatory pathways capable of perceiving external signals and translating them into different cellular behaviors such as motility and development. In the δ-proteobacterium Myxococcus xanthus, chemosensing allows groups of cells to orient themselves and aggregate into specialized multicellular biofilms termed fruiting bodies. M. xanthus contains eight predicted CSS and 21 chemoreceptors. In this work, we systematically deleted genes encoding components of each CSS and chemoreceptors and determined their effects on M. xanthus social behaviors. Then, to understand how the 21 chemoreceptors are distributed among the eight CSS, we examined their phylogenetic distribution, genomic organization and subcellular localization. We found that, in vivo, receptors belonging to the same phylogenetic group colocalize and interact with CSS components of the respective phylogenetic group. Finally, we identified a large chemosensory module formed by three interconnected CSS and multiple chemoreceptors and showed that complex behaviors such as cell group motility and biofilm formation require regulatory apparatus composed of multiple interconnected Che-like systems.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures








Similar articles
- Chemosensory pathways, motility and development in Myxococcus xanthus.Zusman DR, Scott AE, Yang Z, Kirby JR.Zusman DR, et al.Nat Rev Microbiol. 2007 Nov;5(11):862-72. doi: 10.1038/nrmicro1770.Nat Rev Microbiol. 2007.PMID:17922045Review.
- Phenotypic analyses of frz and dif double mutants of Myxococcus xanthus.Shi W, Yang Z, Sun H, Lancero H, Tong L.Shi W, et al.FEMS Microbiol Lett. 2000 Nov 15;192(2):211-5. doi: 10.1111/j.1574-6968.2000.tb09384.x.FEMS Microbiol Lett. 2000.PMID:11064197
- MglC, a Paralog of Myxococcus xanthus GTPase-Activating Protein MglB, Plays a Divergent Role in Motility Regulation.McLoon AL, Wuichet K, Häsler M, Keilberg D, Szadkowski D, Søgaard-Andersen L.McLoon AL, et al.J Bacteriol. 2015 Nov 16;198(3):510-20. doi: 10.1128/JB.00548-15. Print 2016 Feb 1.J Bacteriol. 2015.PMID:26574508Free PMC article.
- Chemosensory signaling controls motility and subcellular polarity in Myxococcus xanthus.Kaimer C, Berleman JE, Zusman DR.Kaimer C, et al.Curr Opin Microbiol. 2012 Dec;15(6):751-7. doi: 10.1016/j.mib.2012.10.005. Epub 2012 Nov 8.Curr Opin Microbiol. 2012.PMID:23142584Free PMC article.Review.
- Regulations governing the multicellular lifestyle of Myxococcus xanthus.Mercier R, Mignot T.Mercier R, et al.Curr Opin Microbiol. 2016 Dec;34:104-110. doi: 10.1016/j.mib.2016.08.009. Epub 2016 Sep 17.Curr Opin Microbiol. 2016.PMID:27648756Review.
Cited by
- Complete genome sequence and identification of polyunsaturated fatty acid biosynthesis genes of the myxobacterium Minicystis rosea DSM 24000T.Pal S, Sharma G, Subramanian S.Pal S, et al.BMC Genomics. 2021 Sep 13;22(1):655. doi: 10.1186/s12864-021-07955-x.BMC Genomics. 2021.PMID:34511070Free PMC article.
- Chemosensory regulation of a HEAT-repeat protein couples aggregation and sporulation in Myxococcus xanthus.Darnell CL, Wilson JM, Tiwari N, Fuentes EJ, Kirby JR.Darnell CL, et al.J Bacteriol. 2014 Sep;196(17):3160-8. doi: 10.1128/JB.01866-14. Epub 2014 Jun 23.J Bacteriol. 2014.PMID:24957622Free PMC article.
- Comparative Genomics of Myxobacterial Chemosensory Systems.Sharma G, Khatri I, Subramanian S.Sharma G, et al.J Bacteriol. 2018 Jan 10;200(3):e00620-17. doi: 10.1128/JB.00620-17. Print 2018 Feb 1.J Bacteriol. 2018.PMID:29158239Free PMC article.
- Diversity and Evolution of Myxobacterial Type IV Pilus Systems.Sharma G, Burrows LL, Singer M.Sharma G, et al.Front Microbiol. 2018 Jul 19;9:1630. doi: 10.3389/fmicb.2018.01630. eCollection 2018.Front Microbiol. 2018.PMID:30072980Free PMC article.
- Internal sense of direction: sensing and signaling from cytoplasmic chemoreceptors.Collins KD, Lacal J, Ottemann KM.Collins KD, et al.Microbiol Mol Biol Rev. 2014 Dec;78(4):672-84. doi: 10.1128/MMBR.00033-14.Microbiol Mol Biol Rev. 2014.PMID:25428939Free PMC article.Review.
References
- Wuichet K, Zhulin IB (2010) Origins and diversification of a complex signal transduction system in prokaryotes. Sci Signal 3: ra50 doi:10.1126/scisignal.2000724 - DOI - PMC - PubMed
- Porter SL, Wadhams GH, Armitage JP (2011) Signal processing in complex chemotaxis pathways. Nat Rev Microbiol 9: 153–165 doi:10.1038/nrmicro2505 - DOI - PubMed
- Roberts MAJ, Papachristodoulou A, Armitage JP (2010) Adaptation and control circuits in bacterial chemotaxis. Biochem Soc Trans 38: 1265–1269 doi:10.1042/BST0381265 - DOI - PubMed
- Sourjik V, Berg HC (2002) Binding of the Escherichia coli response regulator CheY to its target measured in vivo by fluorescence resonance energy transfer. Proc Natl Acad Sci USA 99: 12669–12674 doi:10.1073/pnas.192463199 - DOI - PMC - PubMed
- Kirby JR (2009) Chemotaxis-Like Regulatory Systems: Unique Roles in Diverse Bacteria. Annual Review of Microbiology 63: 45–59 doi:10.1146/annurev.micro.091208.073221 - DOI - PubMed
Publication types
MeSH terms
Related information
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources