The most effective gold nanorod size for plasmonic photothermal therapy: theory and in vitro experiments
- PMID:24433049
- PMCID: PMC3983380
- DOI: 10.1021/jp409298f
The most effective gold nanorod size for plasmonic photothermal therapy: theory and in vitro experiments
Abstract
The development of new and improved photothermal contrast agents for the successful treatment of cancer (or other diseases) via plasmonic photothermal therapy (PPTT) is a crucial part of the application of nanotechnology in medicine. Gold nanorods (AuNRs) have been found to be the most effective photothermal contrast agents, both in vitro and in vivo. Therefore, determining the optimum AuNR size needed for applications in PPTT is of great interest. In the present work, we utilized theoretical calculations as well as experimental techniques in vitro to determine this optimum AuNR size by comparing plasmonic properties and the efficacy as photothermal contrast agents of three different sizes of AuNRs. Our theoretical calculations showed that the contribution of absorbance to the total extinction, the electric field, and the distance at which this field extends away from the nanoparticle surface all govern the effectiveness of the amount of heat these particles generate upon NIR laser irradiation. Comparing between three different AuNRs (38 × 11, 28 × 8, and 17 × 5 nm), we determined that the 28 × 8 nm AuNR is the most effective in plasmonic photothermal heat generation. These results encouraged us to carry out in vitro experiments to compare the PPTT efficacy of the different sized AuNRs. The 28 × 8 nm AuNR was found to be the most effective photothermal contrast agent for PPTT of human oral squamous cell carcinoma. This size AuNR has the best compromise between the total amount of light absorbed and the fraction of which is converted to heat. In addition, the distance at which the electric field extends from the particle surface is most ideal for this size AuNR, as it is sufficient to allow for coupling between the fields of adjacent particles in solution (i.e., particle aggregates), resulting in effective heating in solution.
Figures







Similar articles
- Gold Nanorods for Light-Based Lung Cancer Theranostics.Knights OB, McLaughlan JR.Knights OB, et al.Int J Mol Sci. 2018 Oct 25;19(11):3318. doi: 10.3390/ijms19113318.Int J Mol Sci. 2018.PMID:30366384Free PMC article.
- Efficacy, long-term toxicity, and mechanistic studies of gold nanorods photothermal therapy of cancer in xenograft mice.Ali MR, Rahman MA, Wu Y, Han T, Peng X, Mackey MA, Wang D, Shin HJ, Chen ZG, Xiao H, Wu R, Tang Y, Shin DM, El-Sayed MA.Ali MR, et al.Proc Natl Acad Sci U S A. 2017 Apr 11;114(15):E3110-E3118. doi: 10.1073/pnas.1619302114. Epub 2017 Mar 29.Proc Natl Acad Sci U S A. 2017.PMID:28356516Free PMC article.
- Light interactions with gold nanorods and cells: implications for photothermal nanotherapeutics.Ungureanu C, Kroes R, Petersen W, Groothuis TA, Ungureanu F, Janssen H, van Leeuwen FW, Kooyman RP, Manohar S, van Leeuwen TG.Ungureanu C, et al.Nano Lett. 2011 May 11;11(5):1887-94. doi: 10.1021/nl103884b. Epub 2011 Apr 14.Nano Lett. 2011.PMID:21491868
- Plasmonic photothermal therapy (PPTT) using gold nanoparticles.Huang X, Jain PK, El-Sayed IH, El-Sayed MA.Huang X, et al.Lasers Med Sci. 2008 Jul;23(3):217-28. doi: 10.1007/s10103-007-0470-x. Epub 2007 Aug 3.Lasers Med Sci. 2008.PMID:17674122Review.
- A Review on Cancer Therapy Based on the Photothermal Effect of Gold Nanorod.Xu W, Lin Q, Yin Y, Xu D, Huang X, Xu B, Wang G.Xu W, et al.Curr Pharm Des. 2019;25(46):4836-4847. doi: 10.2174/1381612825666191216150052.Curr Pharm Des. 2019.PMID:31840600Review.
Cited by
- Gold Nanorods for Light-Based Lung Cancer Theranostics.Knights OB, McLaughlan JR.Knights OB, et al.Int J Mol Sci. 2018 Oct 25;19(11):3318. doi: 10.3390/ijms19113318.Int J Mol Sci. 2018.PMID:30366384Free PMC article.
- Rapid purification of gold nanorods for biomedical applications.Scaletti F, Kim CS, Messori L, Rotello VM.Scaletti F, et al.MethodsX. 2014 Jan 1;1:118-123. doi: 10.1016/j.mex.2014.07.007.MethodsX. 2014.PMID:25215269Free PMC article.
- Gold nanoparticle-mediated photothermal therapy: applications and opportunities for multimodal cancer treatment.Riley RS, Day ES.Riley RS, et al.Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017 Jul;9(4):10.1002/wnan.1449. doi: 10.1002/wnan.1449. Epub 2017 Feb 3.Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017.PMID:28160445Free PMC article.Review.
- Programmable Mechanically Active Hydrogel-Based Materials.Dong Y, Ramey-Ward AN, Salaita K.Dong Y, et al.Adv Mater. 2021 Nov;33(46):e2006600. doi: 10.1002/adma.202006600. Epub 2021 Jul 26.Adv Mater. 2021.PMID:34309076Free PMC article.Review.
- In vitro biomechanical properties, fluorescence imaging, surface-enhanced Raman spectroscopy, and photothermal therapy evaluation of luminescent functionalized CaMoO4:Eu@Au hybrid nanorods on human lung adenocarcinoma epithelial cells.Li Q, Parchur AK, Zhou A.Li Q, et al.Sci Technol Adv Mater. 2016 Jul 26;17(1):346-360. doi: 10.1080/14686996.2016.1189797. eCollection 2016.Sci Technol Adv Mater. 2016.PMID:27877887Free PMC article.
References
- Huang X. H.; Jain P. K.; El-Sayed I. H.; El-Sayed M. A. Plasmonic Photothermal Therapy (PPTT) Using Gold Nanoparticles. Lasers Med. Sci. 2008, 23, 217–228. - PubMed
- El-Sayed M. A. Some Interesting Properties of Metals Confined in Time and Nanometer Space of Different Shapes. Acc. Chem. Res. 2001, 34, 257–264. - PubMed
- Link S.; El-Sayed M. A. Shape and Size Dependence of Radiative, Non-Radiative and Photothermal Properties of Gold Nanocrystals. Int. Rev. Phys. Chem. 2000, 19, 409–453.
- Connor E. E.; Mwamuka J.; Gole A.; Murphy C. J.; Wyatt M. D. Gold Nanoparticles are Taken Up by Human Cells But Do Not Cause Acute Cytotoxicity. Small 2005, 1, 325–327. - PubMed
- Khan J. A.; Pillai B.; Das T. K.; Singh Y.; Maiti S. Molecular Effects of Uptake of Gold Nanoparticles in HeLa Cells. ChemBioChem 2007, 8, 1237–1240. - PubMed
Publication types
MeSH terms
Substances
Related information
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous