Multicapillary Flow Reactor: Synthesis of 1,2,5-Thiadiazepane 1,1-Dioxide Library Utilizing One-Pot Elimination and Inter-/Intramolecular Double aza-Michael Addition Via Microwave-Assisted, Continuous-Flow Organic Synthesis (MACOS)
- PMID:24244871
- PMCID: PMC3827364
- DOI: 10.1556/JFC-D-12-00015
Multicapillary Flow Reactor: Synthesis of 1,2,5-Thiadiazepane 1,1-Dioxide Library Utilizing One-Pot Elimination and Inter-/Intramolecular Double aza-Michael Addition Via Microwave-Assisted, Continuous-Flow Organic Synthesis (MACOS)
Abstract
A microwave-assisted, continuous-flow organic synthesis (MACOS) protocol for the synthesis of functionalized 1,2,5-thiadiazepane 1,1-dioxide library, utilizing a one-pot elimination and inter-/intramolecular double aza-Michael addition strategy is reported. The optimized protocol in MACOS was utilized for scale-out and further extended for library production using a multicapillary flow reactor. A 50-member library of 1,2,5-thiadiazepane 1,1-dioxides was prepared on a 100- to 300-mg scale with overall yields between 50 and 80% and over 90 % purity determined by proton nuclear magnetic resonance (1H-NMR) spectroscopy.
Keywords: 1,2,5-thiadiazepane 1,1-dioxide library; MACOS; double aza-Michael; sultams.
Figures




Similar articles
- Application of a Double Aza-Michael Reaction in a 'Click, Click, Cy-Click' Strategy: From Bench to Flow.Zang Q, Javed S, Ullah F, Zhou A, Knudtson CA, Bi D, Basha FZ, Organ MG, Hanson PR.Zang Q, et al.Synthesis (Stuttg). 2011 Sep 1;2011(17):2743-2750. doi: 10.1055/s-0030-1260112.Synthesis (Stuttg). 2011.PMID:21927510Free PMC article.
- Synthesis of an Isoindoline-Annulated, Tricyclic Sultam Library via Microwave-Assisted, Continuous-Flow Organic Synthesis (MACOS).Ullah F, Zang Q, Javed S, Porubsky P, Neuenswander B, Lushington GH, Hanson PR, Organ MG.Ullah F, et al.Synthesis (Stuttg). 2012;44(16):10.1055/s-0031-1289791. doi: 10.1055/s-0031-1289791.Synthesis (Stuttg). 2012.PMID:24244052Free PMC article.
- Automated synthesis of a library of triazolated 1,2,5-thiadiazepane 1,1-dioxides via a double aza-Michael strategy.Zang Q, Javed S, Hill D, Ullah F, Bi D, Porubsky P, Neuenswander B, Lushington GH, Santini C, Organ MG, Hanson PR.Zang Q, et al.ACS Comb Sci. 2012 Aug 13;14(8):456-9. doi: 10.1021/co300049u. Epub 2012 Aug 1.ACS Comb Sci. 2012.PMID:22853708Free PMC article.
- Accessing Stereochemically Rich Sultams via Microwave-Assisted, Continuous Flow Organic Synthesis (MACOS) Scale-out.Organ MG, Hanson PR, Rolfe A, Samarakoon TB, Ullah F.Organ MG, et al.J Flow Chem. 2011 Aug;1(1):32-39. doi: 10.1556/jfchem.2011.00008.J Flow Chem. 2011.PMID:22116791Free PMC article.
- Microwave-induced Bismuth Salts-mediated Synthesis of Molecules of Medicinal Interests.Bandyopadhyay D, Chavez A, Banik BK.Bandyopadhyay D, et al.Curr Med Chem. 2017;24(41):4677-4713. doi: 10.2174/0929867324666170320121142.Curr Med Chem. 2017.PMID:28322155Review.
Cited by
- A summary of seven- and eight-membered ring sultam syntheses via three Michael addition reactions.Niu B, Xie P, Wang M, Wang Y, Zhao W, Pittman CU Jr, Zhou A.Niu B, et al.Mol Divers. 2015 Aug;19(3):447-58. doi: 10.1007/s11030-015-9581-7. Epub 2015 Apr 3.Mol Divers. 2015.PMID:25837373
References
- Schreiber SL. Science. 2000;287:1964–1969. - PubMed
- Burke MD, Berger EM, Schreiber SL. Science. 2003;302:613–618. - PubMed
- Spring DR. Org. Biomol. Chem. 2003;1:3867–3870. - PubMed
- Tan DS. Nat. Chem. Biol. 2005;1:74–84. - PubMed
- Schreiber SL. Nature. 2009;457:153–154. - PubMed
- Damdapani S, Marcaurelle LA. Curr. Opin. Chem. Biol. 2010;14:362–370. - PubMed
- Marcaurelle LA, Comer E, Dandapani S, Duvall JR, Gerard B, Esavan S, Lee MD, 4th, Liu H, Lowe JT, Marie J-C, Mulrooney CA, Pandya BA, Rowley A, Ryba TD, Suh B-C, Wie J, Young D, Akellam LB, Ross NT, Zhang Y-L, Fass DM, Reis SA, Zhao W-N, Haggarty SJ, Palmer M, Foley MA. J. Am. Chem. Soc. 2010;132:16962–16976. - PMC - PubMed
For a well-described and cost effective introduction to combinatorial chemistry see Terrett NK. Combinatorial Chemistry. Oxford University Press; 1998. Maclean D, Baldwin JJ, Ivanov VT, Kato Y, Shaw A, Schenider P, Gordon EM. J. Comb. Chem. 2000;2:562–578.
- Lebegue N, Gallet S, Flouquet N, Carato P, Pfeiffer B, Renard P, Léonce S, Pierré A, Chavatte P, Berthelot P. J. Med. Chem. 2005;48:7363–7373. - PubMed
- Silvestri R, Marfè G, Artico M, La Regina G, Lavecchia A, Novellino E, Morgante M, Di Stefano C, Catalano G, Filomeni G, Abruzzese E, Ciriolo MR, Russo MA, Amadori S, Cirilli R, La Torre F, Salimei PS. J. Med. Chem. 2006;49:5840–5844. - PubMed
- Zhuang L, Wai JS, Embrey MW, Fisher TE, Egbertson MS, Payne LS, Guare JP, Vacca JP, Jr., Hazuda DJ, Felock PJ, Wolfe AL, Stillmock KA, Witmer MV, Moyer G, Schleif WA, Gabryelski LJ, Leonard YM, Lynch JJ, Michelson SR, Jr., Young SD. J. Med. Chem. 2003;46:453–456. - PubMed
- Plietker B, Seng D, Frohlich R, Metz P. Tetrahedron. 2000;56:873–879.
- Metz P, Seng D, Frohlich R. Synlett. 1996:741–742.
- Greig IR, Trozer MJ, Wright PT. Org. Lett. 2001;3:369–371. - PubMed
- Enders D, Moll A, Bats JW. Eur. J. Org. Chem. 2006:1271–1274.
Related information
Grants and funding
LinkOut - more resources
Full Text Sources