Structure of the vortex wake in hovering Anna's hummingbirds (Calypte anna)
- PMID:24174113
- PMCID: PMC3826235
- DOI: 10.1098/rspb.2013.2391
Structure of the vortex wake in hovering Anna's hummingbirds (Calypte anna)
Abstract
Hummingbirds are specialized hoverers for which the vortex wake has been described as a series of single vortex rings shed primarily during the downstroke. Recent findings in bats and birds, as well as in a recent study on Anna's hummingbirds, suggest that each wing may shed a discrete vortex ring, yielding a bilaterally paired wake. Here, we describe the presence of two discrete rings in the wake of hovering Anna's hummingbirds, and also infer force production through a wingbeat with contributions to weight support. Using flow visualization, we found separate vortices at the tip and root of each wing, with 15% stronger circulation at the wingtip than at the root during the downstroke. The upstroke wake is more complex, with near-continuous shedding of vorticity, and circulation of approximately equal magnitude at tip and root. Force estimates suggest that the downstroke contributes 66% of required weight support, whereas the upstroke generates 35%. We also identified a secondary vortex structure yielding 8-26% of weight support. Lift production in Anna's hummingbirds is more evenly distributed between the stroke phases than previously estimated for Rufous hummingbirds, in accordance with the generally symmetric down- and upstrokes that characterize hovering in these birds.
Keywords: aerodynamics; flight; hovering; hummingbird; lift; vortex wake.
Figures




Similar articles
- Hovering performance of Anna's hummingbirds (Calypte anna) in ground effect.Kim EJ, Wolf M, Ortega-Jimenez VM, Cheng SH, Dudley R.Kim EJ, et al.J R Soc Interface. 2014 Sep 6;11(98):20140505. doi: 10.1098/rsif.2014.0505.J R Soc Interface. 2014.PMID:24990291Free PMC article.
- How oscillating aerodynamic forces explain the timbre of the hummingbird's hum and other animals in flapping flight.Hightower BJ, Wijnings PW, Scholte R, Ingersoll R, Chin DD, Nguyen J, Shorr D, Lentink D.Hightower BJ, et al.Elife. 2021 Mar 16;10:e63107. doi: 10.7554/eLife.63107.Elife. 2021.PMID:33724182Free PMC article.
- How the hummingbird wingbeat is tuned for efficient hovering.Ingersoll R, Lentink D.Ingersoll R, et al.J Exp Biol. 2018 Oct 15;221(Pt 20):jeb178228. doi: 10.1242/jeb.178228.J Exp Biol. 2018.PMID:30323114
- Biomechanics and physiology of gait selection in flying birds.Tobalske BW.Tobalske BW.Physiol Biochem Zool. 2000 Nov-Dec;73(6):736-50. doi: 10.1086/318107.Physiol Biochem Zool. 2000.PMID:11121347Review.
- Bat flight: aerodynamics, kinematics and flight morphology.Hedenström A, Johansson LC.Hedenström A, et al.J Exp Biol. 2015 Mar;218(Pt 5):653-63. doi: 10.1242/jeb.031203.J Exp Biol. 2015.PMID:25740899Review.
Cited by
- The wake of hovering flight in bats.Håkansson J, Hedenström A, Winter Y, Johansson LC.Håkansson J, et al.J R Soc Interface. 2015 Aug 6;12(109):20150357. doi: 10.1098/rsif.2015.0357.J R Soc Interface. 2015.PMID:26179990Free PMC article.
- Three-dimensional vortex wake structure of flapping wings in hovering flight.Cheng B, Roll J, Liu Y, Troolin DR, Deng X.Cheng B, et al.J R Soc Interface. 2013 Dec 11;11(91):20130984. doi: 10.1098/rsif.2013.0984. Print 2014 Feb 6.J R Soc Interface. 2013.PMID:24335561Free PMC article.
- Hummingbirds use wing inertial effects to improve manoeuvrability.Haque MN, Cheng B, Tobalske BW, Luo H.Haque MN, et al.J R Soc Interface. 2023 Oct;20(207):20230229. doi: 10.1098/rsif.2023.0229. Epub 2023 Oct 4.J R Soc Interface. 2023.PMID:37788711Free PMC article.
- Three-dimensional flow and lift characteristics of a hovering ruby-throated hummingbird.Song J, Luo H, Hedrick TL.Song J, et al.J R Soc Interface. 2014 Sep 6;11(98):20140541. doi: 10.1098/rsif.2014.0541.J R Soc Interface. 2014.PMID:25008082Free PMC article.
- Hovering hummingbird wing aerodynamics during the annual cycle. I. Complete wing.Achache Y, Sapir N, Elimelech Y.Achache Y, et al.R Soc Open Sci. 2017 Aug 23;4(8):170183. doi: 10.1098/rsos.170183. eCollection 2017 Aug.R Soc Open Sci. 2017.PMID:28878971Free PMC article.
References
- Spedding GR, Hedenström AH, Rosén M. 2003. A family of vortex wakes generated by a thrush nightingale in free flight in a wind tunnel over its entire natural range of flight speeds. J. Exp. Biol. 2076, 2313–2344 (doi:10.1242/jeb.00423) - DOI - PubMed
- Warrick DR, Tobalske BW, Powers DR. 2005. Aerodynamics of the hovering hummingbird. Nature 435, 1094–1098 (doi:10.1038/nature03647) - DOI - PubMed
- Henningsson P, Spedding GR, Hedenström A. 2008. Vortex wake and flight kinematics of a swift in cruising flight in a wind tunnel. J. Exp. Biol. 211, 717–730 (doi:10.1242/jeb.012146) - DOI - PubMed
- Johansson LC, Wolf M, von Busse R, Winter Y, Spedding GR, Hedenström A. 2008. The near and far wake of Pallas’ long tongued bat (Glossophaga soricina). J. Exp. Biol. 211, 2909–2918 (doi:10.1242/jeb.018192) - DOI - PubMed
- Tobalske BW, Warrick DR, Clark CJ, Powers DR, Hedrick TL, Hyder GA, Biewener A. 2007. Three-dimensional kinematics of hummingbird flight. J. Exp. Biol. 210, 2368–2382 (doi:10.1242/jeb.005686) - DOI - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources