Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins
- PMID:24108092
- PMCID: PMC3858462
- DOI: 10.1038/nbt.2726
Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins
Abstract
Genome-wide studies have defined cell type-specific patterns of DNA methylation that are important for regulating gene expression in both normal development and disease. However, determining the functional significance of specific methylation events remains challenging, owing to the lack of methods for removing such modifications in a targeted manner. Here we describe an approach for efficient targeted demethylation of specific CpGs in human cells using fusions of engineered transcription activator-like effector (TALE) repeat arrays and the TET1 hydroxylase catalytic domain. Using these TALE-TET1 fusions, we demonstrate that modification of critical methylated promoter CpG positions can lead to substantial increases in the expression of endogenous human genes. Our results delineate a strategy for understanding the functional significance of specific CpG methylation marks in the context of endogenous gene loci and validate programmable DNA demethylation reagents with potential utility for research and therapeutic applications.
Conflict of interest statement
M.L.M., J.F.A., and J.K.J. have filed a provisional patent application covering the TALE-TET fusion proteins. J.K.J. has a financial interest in Transposagen Biopharmaceuticals. J.K.J.’s interests were reviewed and are managed by Massachusetts General Hospital and Partners HealthCare in accordance with their conflict of interest policies.
Figures



Comment in
- Epigenome editing.Voigt P, Reinberg D.Voigt P, et al.Nat Biotechnol. 2013 Dec;31(12):1097-9. doi: 10.1038/nbt.2756.Nat Biotechnol. 2013.PMID:24316647No abstract available.
Similar articles
- Epigenome editing.Voigt P, Reinberg D.Voigt P, et al.Nat Biotechnol. 2013 Dec;31(12):1097-9. doi: 10.1038/nbt.2756.Nat Biotechnol. 2013.PMID:24316647No abstract available.
- Targeted DNA demethylation in vivo using dCas9-peptide repeat and scFv-TET1 catalytic domain fusions.Morita S, Noguchi H, Horii T, Nakabayashi K, Kimura M, Okamura K, Sakai A, Nakashima H, Hata K, Nakashima K, Hatada I.Morita S, et al.Nat Biotechnol. 2016 Oct;34(10):1060-1065. doi: 10.1038/nbt.3658. Epub 2016 Aug 29.Nat Biotechnol. 2016.PMID:27571369
- Editing DNA Methylation in the Mammalian Genome.Liu XS, Wu H, Ji X, Stelzer Y, Wu X, Czauderna S, Shu J, Dadon D, Young RA, Jaenisch R.Liu XS, et al.Cell. 2016 Sep 22;167(1):233-247.e17. doi: 10.1016/j.cell.2016.08.056.Cell. 2016.PMID:27662091Free PMC article.
- Targeted DNA demethylation of theArabidopsis genome using the human TET1 catalytic domain.Gallego-Bartolomé J, Gardiner J, Liu W, Papikian A, Ghoshal B, Kuo HY, Zhao JM, Segal DJ, Jacobsen SE.Gallego-Bartolomé J, et al.Proc Natl Acad Sci U S A. 2018 Feb 27;115(9):E2125-E2134. doi: 10.1073/pnas.1716945115. Epub 2018 Feb 14.Proc Natl Acad Sci U S A. 2018.PMID:29444862Free PMC article.
- The role of active DNA demethylation and Tet enzyme function in memory formation and cocaine action.Alaghband Y, Bredy TW, Wood MA.Alaghband Y, et al.Neurosci Lett. 2016 Jun 20;625:40-6. doi: 10.1016/j.neulet.2016.01.023. Epub 2016 Jan 19.Neurosci Lett. 2016.PMID:26806038Free PMC article.Review.
Cited by
- An epigenetic hypothesis for the genomic memory of pain.Alvarado S, Tajerian M, Suderman M, Machnes Z, Pierfelice S, Millecamps M, Stone LS, Szyf M.Alvarado S, et al.Front Cell Neurosci. 2015 Mar 24;9:88. doi: 10.3389/fncel.2015.00088. eCollection 2015.Front Cell Neurosci. 2015.PMID:25852480Free PMC article.
- Direct regulation of E-cadherin by targeted histone methylation of TALE-SET fusion protein in cancer cells.Cho HS, Kang JG, Lee JH, Lee JJ, Jeon SK, Ko JH, Kim DS, Park KH, Kim YS, Kim NS.Cho HS, et al.Oncotarget. 2015 Sep 15;6(27):23837-44. doi: 10.18632/oncotarget.4340.Oncotarget. 2015.PMID:26125227Free PMC article.
- Epigenome editing made easy.Zentner GE, Henikoff S.Zentner GE, et al.Nat Biotechnol. 2015 Jun;33(6):606-7. doi: 10.1038/nbt.3248.Nat Biotechnol. 2015.PMID:26057978No abstract available.
- Epigenome engineering in cancer: fairytale or a realistic path to the clinic?Falahi F, Sgro A, Blancafort P.Falahi F, et al.Front Oncol. 2015 Feb 6;5:22. doi: 10.3389/fonc.2015.00022. eCollection 2015.Front Oncol. 2015.PMID:25705610Free PMC article.Review.
- 3D-Epigenomic Regulation of Gene Transcription in Hepatocellular Carcinoma.Feng Y, Wang P, Cai L, Zhan M, He F, Wang J, Li Y, Gega E, Zhang W, Zhao W, Xin Y, Chen X, Ruan Y, Lu L.Feng Y, et al.Adv Genet (Hoboken). 2022 Jun 29;3(4):2100010. doi: 10.1002/ggn2.202100010. eCollection 2022 Dec.Adv Genet (Hoboken). 2022.PMID:36911294Free PMC article.
References
- Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 2012;13:484–492. - PubMed
- Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat. Rev. Genet. 2013;14:204–220. - PubMed
- Brena RM, Costello JF. Genome-epigenome interactions in cancer. Hum. Mol. Genet. 2007;16 Spec No 1:R96–R105. - PubMed
- Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16:6–21. - PubMed
- Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat. Rev. Genet. 2008;9:465–476. - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
Related information
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials