A robust methodology to subclassify pseudokinases based on their nucleotide-binding properties
- PMID:24107129
- PMCID: PMC5679212
- DOI: 10.1042/BJ20131174
A robust methodology to subclassify pseudokinases based on their nucleotide-binding properties
Abstract
Protein kinase-like domains that lack conserved residues known to catalyse phosphoryl transfer, termed pseudokinases, have emerged as important signalling domains across all kingdoms of life. Although predicted to function principally as catalysis-independent protein-interaction modules, several pseudokinase domains have been attributed unexpected catalytic functions, often amid controversy. We established a thermal-shift assay as a benchmark technique to define the nucleotide-binding properties of kinase-like domains. Unlike in vitro kinase assays, this assay is insensitive to the presence of minor quantities of contaminating kinases that may otherwise lead to incorrect attribution of catalytic functions to pseudokinases. We demonstrated the utility of this method by classifying 31 diverse pseudokinase domains into four groups: devoid of detectable nucleotide or cation binding; cation-independent nucleotide binding; cation binding; and nucleotide binding enhanced by cations. Whereas nine pseudokinases bound ATP in a divalent cation-dependent manner, over half of those examined did not detectably bind nucleotides, illustrating that pseudokinase domains predominantly function as non-catalytic protein-interaction modules within signalling networks and that only a small subset is potentially catalytically active. We propose that henceforth the thermal-shift assay be adopted as the standard technique for establishing the nucleotide-binding and catalytic potential of kinase-like domains.
Figures




Similar articles
- Nucleotide-binding mechanisms in pseudokinases.Hammarén HM, Virtanen AT, Silvennoinen O.Hammarén HM, et al.Biosci Rep. 2015 Nov 20;36(1):e00282. doi: 10.1042/BSR20150226.Biosci Rep. 2015.PMID:26589967Free PMC article.Review.
- ATP binding to the pseudokinase domain of JAK2 is critical for pathogenic activation.Hammarén HM, Ungureanu D, Grisouard J, Skoda RC, Hubbard SR, Silvennoinen O.Hammarén HM, et al.Proc Natl Acad Sci U S A. 2015 Apr 14;112(15):4642-7. doi: 10.1073/pnas.1423201112. Epub 2015 Mar 30.Proc Natl Acad Sci U S A. 2015.PMID:25825724Free PMC article.
- Characterization of Ligand Binding to Pseudokinases Using a Thermal Shift Assay.Lucet IS, Murphy JM.Lucet IS, et al.Methods Mol Biol. 2017;1636:91-104. doi: 10.1007/978-1-4939-7154-1_7.Methods Mol Biol. 2017.PMID:28730475
- The Tribbles 2 (TRB2) pseudokinase binds to ATP and autophosphorylates in a metal-independent manner.Bailey FP, Byrne DP, Oruganty K, Eyers CE, Novotny CJ, Shokat KM, Kannan N, Eyers PA.Bailey FP, et al.Biochem J. 2015 Apr 1;467(1):47-62. doi: 10.1042/BJ20141441.Biochem J. 2015.PMID:25583260Free PMC article.
- Dawn of the dead: protein pseudokinases signal new adventures in cell biology.Eyers PA, Murphy JM.Eyers PA, et al.Biochem Soc Trans. 2013 Aug;41(4):969-74. doi: 10.1042/BST20130115.Biochem Soc Trans. 2013.PMID:23863165Review.
Cited by
- Unlocking the potential: advancements and future horizons in ROR1-targeted cancer therapies.Li L, Huang W, Ren X, Wang Z, Ding K, Zhao L, Zhang J.Li L, et al.Sci China Life Sci. 2024 Dec;67(12):2603-2616. doi: 10.1007/s11427-024-2685-9. Epub 2024 Aug 12.Sci China Life Sci. 2024.PMID:39145866Review.
- Eph receptor signalling: from catalytic to non-catalytic functions.Liang LY, Patel O, Janes PW, Murphy JM, Lucet IS.Liang LY, et al.Oncogene. 2019 Sep;38(39):6567-6584. doi: 10.1038/s41388-019-0931-2. Epub 2019 Aug 12.Oncogene. 2019.PMID:31406248Review.
- The Receptor-like Pseudokinase GHR1 Is Required for Stomatal Closure.Sierla M, Hõrak H, Overmyer K, Waszczak C, Yarmolinsky D, Maierhofer T, Vainonen JP, Salojärvi J, Denessiouk K, Laanemets K, Tõldsepp K, Vahisalu T, Gauthier A, Puukko T, Paulin L, Auvinen P, Geiger D, Hedrich R, Kollist H, Kangasjärvi J.Sierla M, et al.Plant Cell. 2018 Nov;30(11):2813-2837. doi: 10.1105/tpc.18.00441. Epub 2018 Oct 25.Plant Cell. 2018.PMID:30361234Free PMC article.
- Differential effects of 'resurrecting' Csp pseudoproteases during Clostridioides difficile spore germination.Donnelly ML, Forster ER, Rohlfing AE, Shen A.Donnelly ML, et al.Biochem J. 2020 Apr 30;477(8):1459-1478. doi: 10.1042/BCJ20190875.Biochem J. 2020.PMID:32242623Free PMC article.
- Biphasic regulation of tumorigenesis by PTK7 expression level in esophageal squamous cell carcinoma.Shin WS, Gim J, Won S, Lee ST.Shin WS, et al.Sci Rep. 2018 Jun 4;8(1):8519. doi: 10.1038/s41598-018-26957-6.Sci Rep. 2018.PMID:29867084Free PMC article.
References
- Singh S, Lowe DG, Thorpe DS, Rodriguez H, Kuang WJ, Dangott LJ, Chinkers M, Goeddel DV, Garbers DL. Membrane guanylate cyclase is a cell-surface receptor with homology to protein kinases. Nature. 1988;334:708–712. - PubMed
- Boudeau J, Miranda-Saavedra D, Barton GJ, Alessi DR. Emerging roles of pseudokinases. Trends Cell Biol. 2006;16:443–452. - PubMed
Publication types
MeSH terms
Substances
Related information
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
Miscellaneous