Plug-and-play pairing via defined divalent streptavidins
- PMID:24056174
- PMCID: PMC4047826
- DOI: 10.1016/j.jmb.2013.09.016
Plug-and-play pairing via defined divalent streptavidins
Abstract
Streptavidin is one of the most important hubs for molecular biology, either multimerizing biomolecules, bridging one molecule to another, or anchoring to a biotinylated surface/nanoparticle. Streptavidin has the advantage of rapid ultra-stable binding to biotin. However, the ability of streptavidin to bind four biotinylated molecules in a heterogeneous manner is often limiting. Here, we present an efficient approach to isolate streptavidin tetramers with two biotin-binding sites in a precise arrangement, cis or trans. We genetically modified specific subunits with negatively charged tags, refolded a mixture of monomers, and used ion-exchange chromatography to resolve tetramers according to the number and orientation of tags. We solved the crystal structures of cis-divalent streptavidin to 1.4Å resolution and trans-divalent streptavidin to 1.6Å resolution, validating the isolation strategy and explaining the behavior of the Dead streptavidin variant. cis- and trans-divalent streptavidins retained tetravalent streptavidin's high thermostability and low off-rate. These defined divalent streptavidins enabled us to uncover how streptavidin binding depends on the nature of the biotin ligand. Biotinylated DNA showed strong negative cooperativity of binding to cis-divalent but not trans-divalent streptavidin. A small biotinylated protein bound readily to cis and trans binding sites. We also solved the structure of trans-divalent streptavidin bound to biotin-4-fluorescein, showing how one ligand obstructs binding to an adjacent biotin-binding site. Using a hexaglutamate tag proved a more powerful way to isolate monovalent streptavidin, for ultra-stable labeling without undesired clustering. These forms of streptavidin allow this key hub to be used with a new level of precision, for homogeneous molecular assembly.
Keywords: 2-methyl-2,4-pentanediol; LDLR; MPD; PBS; PDB; Protein Data Bank; avidin; bivalent; low-density lipoprotein receptor; nanotechnology; phosphate-buffered saline; protein design; supramolecular.
© 2013. Published by Elsevier Ltd. All rights reserved.
Figures








Similar articles
- Stable, high-affinity streptavidin monomer for protein labeling and monovalent biotin detection.Lim KH, Huang H, Pralle A, Park S.Lim KH, et al.Biotechnol Bioeng. 2013 Jan;110(1):57-67. doi: 10.1002/bit.24605. Epub 2012 Aug 8.Biotechnol Bioeng. 2013.PMID:22806584
- Effect of streptavidins with varying biotin binding affinities on the properties of biotinylated gramicidin channels.Antonenko YN, Rokitskaya TI, Kotova EA, Reznik GO, Sano T, Cantor CR.Antonenko YN, et al.Biochemistry. 2004 Apr 20;43(15):4575-82. doi: 10.1021/bi034984r.Biochemistry. 2004.PMID:15078104
- A monovalent streptavidin with a single femtomolar biotin binding site.Howarth M, Chinnapen DJ, Gerrow K, Dorrestein PC, Grandy MR, Kelleher NL, El-Husseini A, Ting AY.Howarth M, et al.Nat Methods. 2006 Apr;3(4):267-73. doi: 10.1038/nmeth861.Nat Methods. 2006.PMID:16554831Free PMC article.
- Smart and biofunctional streptavidin.Stayton PS, Nelson KE, McDevitt TC, Bulmus V, Shimoboji T, Ding Z, Hoffman AS.Stayton PS, et al.Biomol Eng. 1999 Dec 31;16(1-4):93-9. doi: 10.1016/s1050-3862(99)00043-1.Biomol Eng. 1999.PMID:10796990Review.
- Streptavidin-biotin binding energetics.Stayton PS, Freitag S, Klumb LA, Chilkoti A, Chu V, Penzotti JE, To R, Hyre D, Le Trong I, Lybrand TP, Stenkamp RE.Stayton PS, et al.Biomol Eng. 1999 Dec 31;16(1-4):39-44. doi: 10.1016/s1050-3862(99)00042-x.Biomol Eng. 1999.PMID:10796983Review.
Cited by
- Probing Bioelectronic Connections Using Streptavidin Molecules with Modified Valency.Zhang B, Ryan E, Wang X, Lindsay S.Zhang B, et al.J Am Chem Soc. 2021 Sep 22;143(37):15139-15144. doi: 10.1021/jacs.1c05569. Epub 2021 Sep 9.J Am Chem Soc. 2021.PMID:34499834Free PMC article.
- Controlling Multivalent Binding through Surface Chemistry: Model Study on Streptavidin.Dubacheva GV, Araya-Callis C, Geert Volbeda A, Fairhead M, Codée J, Howarth M, Richter RP.Dubacheva GV, et al.J Am Chem Soc. 2017 Mar 22;139(11):4157-4167. doi: 10.1021/jacs.7b00540. Epub 2017 Mar 9.J Am Chem Soc. 2017.PMID:28234007Free PMC article.
- RASGRP1 deficiency causes immunodeficiency with impaired cytoskeletal dynamics.Salzer E, Cagdas D, Hons M, Mace EM, Garncarz W, Petronczki ÖY, Platzer R, Pfajfer L, Bilic I, Ban SA, Willmann KL, Mukherjee M, Supper V, Hsu HT, Banerjee PP, Sinha P, McClanahan F, Zlabinger GJ, Pickl WF, Gribben JG, Stockinger H, Bennett KL, Huppa JB, Dupré L, Sanal Ö, Jäger U, Sixt M, Tezcan I, Orange JS, Boztug K.Salzer E, et al.Nat Immunol. 2016 Dec;17(12):1352-1360. doi: 10.1038/ni.3575. Epub 2016 Oct 24.Nat Immunol. 2016.PMID:27776107Free PMC article.
- Dynamics of a Molecular Plug Docked onto a Solid-State Nanopore.Shi X, Li Q, Gao R, Si W, Liu SC, Aksimentiev A, Long YT.Shi X, et al.J Phys Chem Lett. 2018 Aug 16;9(16):4686-4694. doi: 10.1021/acs.jpclett.8b01755. Epub 2018 Aug 3.J Phys Chem Lett. 2018.PMID:30058336Free PMC article.
- Streptavidin cooperative allosterism upon binding biotin observed by differential changes in intrinsic fluorescence.Waner MJ, Hiznay JM, Mustovich AT, Patton W, Ponyik C, Mascotti DP.Waner MJ, et al.Biochem Biophys Rep. 2019 Jan 3;17:127-131. doi: 10.1016/j.bbrep.2018.12.011. eCollection 2019 Mar.Biochem Biophys Rep. 2019.PMID:30805560Free PMC article.
References
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
- Actions
Related information
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials