Bacterial genome replication at subzero temperatures in permafrost
- PMID:23985750
- PMCID: PMC3869017
- DOI: 10.1038/ismej.2013.140
Bacterial genome replication at subzero temperatures in permafrost
Abstract
Microbial metabolic activity occurs at subzero temperatures in permafrost, an environment representing ∼25% of the global soil organic matter. Although much of the observed subzero microbial activity may be due to basal metabolism or macromolecular repair, there is also ample evidence for cellular growth. Unfortunately, most metabolic measurements or culture-based laboratory experiments cannot elucidate the specific microorganisms responsible for metabolic activities in native permafrost, nor, can bulk approaches determine whether different members of the microbial community modulate their responses as a function of changing subzero temperatures. Here, we report on the use of stable isotope probing with (13)C-acetate to demonstrate bacterial genome replication in Alaskan permafrost at temperatures of 0 to -20 °C. We found that the majority (80%) of operational taxonomic units detected in permafrost microcosms were active and could synthesize (13)C-labeled DNA when supplemented with (13)C-acetate at temperatures of 0 to -20 °C during a 6-month incubation. The data indicated that some members of the bacterial community were active across all of the experimental temperatures, whereas many others only synthesized DNA within a narrow subzero temperature range. Phylogenetic analysis of (13)C-labeled 16S rRNA genes revealed that the subzero active bacteria were members of the Acidobacteria, Actinobacteria, Chloroflexi, Gemmatimonadetes and Proteobacteria phyla and were distantly related to currently cultivated psychrophiles. These results imply that small subzero temperature changes may lead to changes in the active microbial community, which could have consequences for biogeochemical cycling in permanently frozen systems.
Figures




Similar articles
- Arctic tundra soil bacterial communities active at subzero temperatures detected by stable isotope probing.Gadkari PS, McGuinness LR, Männistö MK, Kerkhof LJ, Häggblom MM.Gadkari PS, et al.FEMS Microbiol Ecol. 2020 Feb 1;96(2):fiz192. doi: 10.1093/femsec/fiz192.FEMS Microbiol Ecol. 2020.PMID:31778159
- Changes in the Active, Dead, and Dormant Microbial Community Structure across a Pleistocene Permafrost Chronosequence.Burkert A, Douglas TA, Waldrop MP, Mackelprang R.Burkert A, et al.Appl Environ Microbiol. 2019 Mar 22;85(7):e02646-18. doi: 10.1128/AEM.02646-18. Print 2019 Apr 1.Appl Environ Microbiol. 2019.PMID:30683748Free PMC article.
- Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw.Mackelprang R, Waldrop MP, DeAngelis KM, David MM, Chavarria KL, Blazewicz SJ, Rubin EM, Jansson JK.Mackelprang R, et al.Nature. 2011 Nov 6;480(7377):368-71. doi: 10.1038/nature10576.Nature. 2011.PMID:22056985
- The subzero microbiome: microbial activity in frozen and thawing soils.Nikrad MP, Kerkhof LJ, Häggblom MM.Nikrad MP, et al.FEMS Microbiol Ecol. 2016 Jun;92(6):fiw081. doi: 10.1093/femsec/fiw081. Epub 2016 Apr 21.FEMS Microbiol Ecol. 2016.PMID:27106051Review.
- Microbial ecology and biodiversity in permafrost.Steven B, Léveillé R, Pollard WH, Whyte LG.Steven B, et al.Extremophiles. 2006 Aug;10(4):259-67. doi: 10.1007/s00792-006-0506-3. Epub 2006 Mar 21.Extremophiles. 2006.PMID:16550305Review.
Cited by
- Metagenome-assembled genome distribution and key functionality highlight importance of aerobic metabolism in Svalbard permafrost.Xue Y, Jonassen I, Øvreås L, Taş N.Xue Y, et al.FEMS Microbiol Ecol. 2020 May 1;96(5):fiaa057. doi: 10.1093/femsec/fiaa057.FEMS Microbiol Ecol. 2020.PMID:32301987Free PMC article.
- Microbial characterisation and Cold-Adapted Predicted Protein (CAPP) database construction from the active layer of Greenland's permafrost.Varliero G, Rafiq M, Singh S, Summerfield A, Sgouridis F, Cowan DA, Barker G.Varliero G, et al.FEMS Microbiol Ecol. 2021 Sep 16;97(10):fiab127. doi: 10.1093/femsec/fiab127.FEMS Microbiol Ecol. 2021.PMID:34468725Free PMC article.
- Study of Wetland Soils of the Salar de Atacama with Different Azonal Vegetative Formations Reveals Changes in the Microbiota Associated with Hygrophile Plant Type on the Soil Surface.Ramos-Tapia I, Nuñez R, Salinas C, Salinas P, Soto J, Paneque M.Ramos-Tapia I, et al.Microbiol Spectr. 2022 Oct 26;10(5):e0053322. doi: 10.1128/spectrum.00533-22. Epub 2022 Sep 19.Microbiol Spectr. 2022.PMID:36121227Free PMC article.
- Warming Alters Expressions of Microbial Functional Genes Important to Ecosystem Functioning.Xue K, Xie J, Zhou A, Liu F, Li D, Wu L, Deng Y, He Z, Van Nostrand JD, Luo Y, Zhou J.Xue K, et al.Front Microbiol. 2016 May 6;7:668. doi: 10.3389/fmicb.2016.00668. eCollection 2016.Front Microbiol. 2016.PMID:27199978Free PMC article.
- Effect of Freeze-Thaw on a Midtemperate Soil Bacterial Community and the Correlation Network of Its Members.Juan Y, Jiang N, Tian L, Chen X, Sun W, Chen L.Juan Y, et al.Biomed Res Int. 2018 Jun 27;2018:8412429. doi: 10.1155/2018/8412429. eCollection 2018.Biomed Res Int. 2018.PMID:30050943Free PMC article.
References
- Babcock DA, Wawrik B, Paul JH, McGuinness L, Kerkhof LJ. Rapid screening of a large insert BAC library for specific 16S rRNA genes using TRFLP. J Microbiol Meth. 2007;71:156–161. - PubMed
- Bowman JS, Deming JW.2010Elevated bacterial abundance and exopolymers in saline frost flowers and implications for atmospheric chemistry and microbial dispersal Geophys Res Lett 37doi: 10.1029/2010GL043020 - DOI
Publication types
MeSH terms
Substances
Related information
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases