Role of integrated cancer nanomedicine in overcoming drug resistance
- PMID:23880506
- DOI: 10.1016/j.addr.2013.07.012
Role of integrated cancer nanomedicine in overcoming drug resistance
Abstract
Cancer remains a major killer of mankind. Failure of conventional chemotherapy has resulted in recurrence and development of virulent multi drug resistant (MDR) phenotypes adding to the complexity and diversity of this deadly disease. Apart from displaying classical physiological abnormalities and aberrant blood flow behavior, MDR cancers exhibit several distinctive features such as higher apoptotic threshold, aerobic glycolysis, regions of hypoxia, and elevated activity of drug-efflux transporters. MDR transporters play a pivotal role in protecting the cancer stem cells (CSCs) from chemotherapy. It is speculated that CSCs are instrumental in reviving tumors after the chemo and radiotherapy. In this regard, multifunctional nanoparticles that can integrate various key components such as drugs, genes, imaging agents and targeting ligands using unique delivery platforms would be more efficient in treating MDR cancers. This review presents some of the important principles involved in development of MDR and novel methods of treating cancers using multifunctional-targeted nanoparticles. Illustrative examples of nanoparticles engineered for drug/gene combination delivery and stimuli responsive nanoparticle systems for cancer therapy are also discussed.
Keywords: 1,2-distearoyl-sn-glycero 3-phosphocholine; AAc; AML; Acrylic acid; Acute myeloid leukemia; Arginine–glycine–aspartic acid; BCP; BK; Block copolymer; Bradykinin; CD; CSC; CTAB; Cancer stem cells; Cetyltrimethylammonium bromide; Chol; Cholesterol; Cyclodextrin; DDS; DLL4; DMAEMA; DOPG; DOX; DPPC; DSPC; Delta-like 4 ligand; Dex; Dexamethasone; Dioleoylphosphatidylglycerol; Dipalmitoylphosphatidylcholine; Doxorubicin; Drug delivery system; ECM; EGFR; EMT; EOEOVE; EPR; Enhanced permeability and retention; EpCAM; Epidermal growth factor receptor; Epithelial cell adhesion molecule; Epithelial–mesenchymal transition; Extracellular matrix; GILT; Gamma-interferon-inducible lysosomal thiol reductase; HDAC; HFMF; HIFU; HPMA; High intensity focused ultrasound; High-frequency magnetic field; Histone deacetylase; IARC; IPNs; Imaging; Infra-red; International agency for research on cancer; Interpenetrating networks; LCST; LTSL; Low thermosensitive liposomes; Lower critical solution temperature; MA; MAAc; MDR; MMPs; MPS; MRI; MSNP; MSNs; Magnetic resonance imaging; Maleic anhydride (MA); Matrix metalloproteinase; Mesoporous silica nanoparticles; Methacrylic acid; Mononuclear phagocytic system; Multi-drug resistance; Multifunctional nanosystems; N,N-dimethylaminoethyl methacrylate; NGF; NIR; NO; NSCLC; NTSL; Nerve growth factor; Nitric oxide; Non-small cell lung cancer; Non-thermosensitive liposomes; P-glycoprotein; P-gp; PAA; PAM; PCL; PDDA; PDEAAm; PDMAEMA; PEG; PEI; PEO; PGA; PGs; PHEA; PLGA; PNIPAAm; PSMA; PTMC; PVCL; PbAE; Poly(N,N-diethylacrylamide); Poly(N-(2-hydroxypropyl)methacrylamide); Poly(N-isopropyl acrylamide); Poly(N-vinlycaprolactam); Poly(amidoamine); Poly(caprolactone); Poly(d,l-lactide-co-glycolide); Poly(dimethyldiallylammonium chloride); Poly(ethylene glycol); Poly(ethylene oxide); Poly(glutamic acid); Poly(trimethylene carbonate); Poly(β-amino ester); Poly[2-(2-ethoxy)ethoxyethyl vinyl ether]; Poly[2-(dimethylamino)ethyl methacrylate]; Polyacrylamide; Polyethyleneimine; Prostaglandins; Prostate-specific membrane antigen; RGD; RNA interference; RNAi; SCLC; SP; SPIONs; Short hairpin RNA; Side population; Small cell lung cancer; Small interfering RNA; Superparamagnetic iron oxide nanoparticles; TF; TTSL; Targeted delivery; Tegafur; Thermosensitive liposomes; Tumor multidrug resistance; UCNPs; UCST; US; Ultrasound; Upconverting nanoparticles; Upper critical solution temperature; VEGF; VPF; Vascular endothelial growth factor; Vascular permeability factor; shRNA; siRNA; α,β-poly(N-2-hydroxyethyl)-d,l-aspartamide.
© 2013.
Similar articles
- Small interfering RNA for cancer treatment: overcoming hurdles in delivery.Charbe NB, Amnerkar ND, Ramesh B, Tambuwala MM, Bakshi HA, Aljabali AAA, Khadse SC, Satheeshkumar R, Satija S, Metha M, Chellappan DK, Shrivastava G, Gupta G, Negi P, Dua K, Zacconi FC.Charbe NB, et al.Acta Pharm Sin B. 2020 Nov;10(11):2075-2109. doi: 10.1016/j.apsb.2020.10.005. Epub 2020 Oct 13.Acta Pharm Sin B. 2020.PMID:33304780Free PMC article.Review.
- Carbon nanotubes for delivery of small molecule drugs.Wong BS, Yoong SL, Jagusiak A, Panczyk T, Ho HK, Ang WH, Pastorin G.Wong BS, et al.Adv Drug Deliv Rev. 2013 Dec;65(15):1964-2015. doi: 10.1016/j.addr.2013.08.005. Epub 2013 Aug 14.Adv Drug Deliv Rev. 2013.PMID:23954402Review.
- Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review.Hadinoto K, Sundaresan A, Cheow WS.Hadinoto K, et al.Eur J Pharm Biopharm. 2013 Nov;85(3 Pt A):427-43. doi: 10.1016/j.ejpb.2013.07.002. Epub 2013 Jul 17.Eur J Pharm Biopharm. 2013.PMID:23872180Review.
- Ligand-targeted particulate nanomedicines undergoing clinical evaluation: current status.van der Meel R, Vehmeijer LJ, Kok RJ, Storm G, van Gaal EV.van der Meel R, et al.Adv Drug Deliv Rev. 2013 Oct;65(10):1284-98. doi: 10.1016/j.addr.2013.08.012. Epub 2013 Sep 6.Adv Drug Deliv Rev. 2013.PMID:24018362Review.
- Recent advances in drug delivery systems for targeting cancer stem cells.Duan H, Liu Y, Gao Z, Huang W.Duan H, et al.Acta Pharm Sin B. 2021 Jan;11(1):55-70. doi: 10.1016/j.apsb.2020.09.016. Epub 2020 Oct 2.Acta Pharm Sin B. 2021.PMID:33532180Free PMC article.Review.
Cited by
- Recent advances in dendrimer-based nanovectors for tumor-targeted drug and gene delivery.Kesharwani P, Iyer AK.Kesharwani P, et al.Drug Discov Today. 2015 May;20(5):536-47. doi: 10.1016/j.drudis.2014.12.012. Epub 2014 Dec 31.Drug Discov Today. 2015.PMID:25555748Free PMC article.Review.
- Emerging role of tumor cell plasticity in modifying therapeutic response.Qin S, Jiang J, Lu Y, Nice EC, Huang C, Zhang J, He W.Qin S, et al.Signal Transduct Target Ther. 2020 Oct 7;5(1):228. doi: 10.1038/s41392-020-00313-5.Signal Transduct Target Ther. 2020.PMID:33028808Free PMC article.Review.
- Liquid-solid phase-inversion PLGA implant for the treatment of residual tumor tissue after HIFU ablation.Li J, Krupka T, Yao J, Wang R, Jiang L, Zhou Y, Zuo G, Wang Z, Dai L, Ren J, Zheng Y, Wang D.Li J, et al.PLoS One. 2015 Feb 24;10(2):e0117358. doi: 10.1371/journal.pone.0117358. eCollection 2015.PLoS One. 2015.PMID:25710485Free PMC article.
- Dextran Sulfate Nanocarriers: Design, Strategies and Biomedical Applications.Ramasundaram S, Saravanakumar G, Sobha S, Oh TH.Ramasundaram S, et al.Int J Mol Sci. 2022 Dec 26;24(1):355. doi: 10.3390/ijms24010355.Int J Mol Sci. 2022.PMID:36613798Free PMC article.Review.
- A tumor multicomponent targeting chemoimmune drug delivery system for reprograming the tumor microenvironment and personalized cancer therapy.Sau S, Tatiparti K, Alsaab HO, Kashaw SK, Iyer AK.Sau S, et al.Drug Discov Today. 2018 Jul;23(7):1344-1356. doi: 10.1016/j.drudis.2018.03.003. Epub 2018 Mar 15.Drug Discov Today. 2018.PMID:29551455Free PMC article.Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous