Growth and fermentation of D-xylose by Saccharomyces cerevisiae expressing a novel D-xylose isomerase originating from the bacterium Prevotella ruminicola TC2-24
- PMID:23721368
- PMCID: PMC3673840
- DOI: 10.1186/1754-6834-6-84
Growth and fermentation of D-xylose by Saccharomyces cerevisiae expressing a novel D-xylose isomerase originating from the bacterium Prevotella ruminicola TC2-24
Abstract
Background: Saccharomyces cerevisiae strains expressing D-xylose isomerase (XI) produce some of the highest reported ethanol yields from D-xylose. Unfortunately, most bacterial XIs that have been expressed in S. cerevisiae are either not functional, require additional strain modification, or have low affinity for D-xylose. This study analyzed several XIs from rumen and intestinal microorganisms to identify enzymes with improved properties for engineering S. cerevisiae for D-xylose fermentation.
Results: Four XIs originating from rumen and intestinal bacteria were isolated and expressed in a S. cerevisiae CEN.PK2-1C parental strain primed for D-xylose metabolism by over expression of its native D-xylulokinase. Three of the XIs were functional in S. cerevisiae, based on the strain's ability to grow in D-xylose medium. The most promising strain, expressing the XI mined from Prevotella ruminicola TC2-24, was further adapted for aerobic and fermentative growth by serial transfers of D-xylose cultures under aerobic, and followed by microaerobic conditions. The evolved strain had a specific growth rate of 0.23 h-1 on D-xylose medium, which is comparable to the best reported results for analogous S. cerevisiae strains including those expressing the Piromyces sp. E2 XI. When used to ferment D-xylose, the adapted strain produced 13.6 g/L ethanol in 91 h with a metabolic yield of 83% of theoretical. From analysis of the P. ruminicola XI, it was determined the enzyme possessed a Vmax of 0.81 μmole/min/mg protein and a Km of 34 mM.
Conclusion: This study identifies a new xylose isomerase from the rumen bacterium Prevotella ruminicola TC2-24 that has one of the highest affinities and specific activities compared to other bacterial and fungal D-xylose isomerases expressed in yeast. When expressed in S. cerevisiae and used to ferment D-xylose, very high ethanol yield was obtained. This new XI should be a promising resource for constructing other D-xylose fermenting strains, including industrial yeast genetic backgrounds.
Figures




Similar articles
- Functional expression of xylose isomerase in flocculating industrial Saccharomyces cerevisiae strain for bioethanol production.Li YC, Li GY, Gou M, Xia ZY, Tang YQ, Kida K.Li YC, et al.J Biosci Bioeng. 2016 Jun;121(6):685-691. doi: 10.1016/j.jbiosc.2015.10.013. Epub 2015 Nov 30.J Biosci Bioeng. 2016.PMID:26645659
- Bacterial xylose isomerases from the mammal gut Bacteroidetes cluster function in Saccharomyces cerevisiae for effective xylose fermentation.Peng B, Huang S, Liu T, Geng A.Peng B, et al.Microb Cell Fact. 2015 May 17;14:70. doi: 10.1186/s12934-015-0253-1.Microb Cell Fact. 2015.PMID:25981595Free PMC article.
- Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae.Brat D, Boles E, Wiedemann B.Brat D, et al.Appl Environ Microbiol. 2009 Apr;75(8):2304-11. doi: 10.1128/AEM.02522-08. Epub 2009 Feb 13.Appl Environ Microbiol. 2009.PMID:19218403Free PMC article.
- Development of efficient xylose fermentation in Saccharomyces cerevisiae: xylose isomerase as a key component.van Maris AJ, Winkler AA, Kuyper M, de Laat WT, van Dijken JP, Pronk JT.van Maris AJ, et al.Adv Biochem Eng Biotechnol. 2007;108:179-204. doi: 10.1007/10_2007_057.Adv Biochem Eng Biotechnol. 2007.PMID:17846724Review.
- Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives.Matsushika A, Inoue H, Kodaki T, Sawayama S.Matsushika A, et al.Appl Microbiol Biotechnol. 2009 Aug;84(1):37-53. doi: 10.1007/s00253-009-2101-x. Epub 2009 Jul 2.Appl Microbiol Biotechnol. 2009.PMID:19572128Review.
Cited by
- Reassessment of requirements for anaerobic xylose fermentation by engineered, non-evolved Saccharomyces cerevisiae strains.Bracher JM, Martinez-Rodriguez OA, Dekker WJC, Verhoeven MD, van Maris AJA, Pronk JT.Bracher JM, et al.FEMS Yeast Res. 2019 Jan 1;19(1):foy104. doi: 10.1093/femsyr/foy104.FEMS Yeast Res. 2019.PMID:30252062Free PMC article.
- Cultivation of the gut bacterium Prevotella copri DSM 18205T using glucose and xylose as carbon sources.Huang F, Sardari RRR, Jasilionis A, Böök O, Öste R, Rascón A, Heyman-Lindén L, Holst O, Karlsson EN.Huang F, et al.Microbiologyopen. 2021 Jun;10(3):e1213. doi: 10.1002/mbo3.1213.Microbiologyopen. 2021.PMID:34180602Free PMC article.
- Mutations in PMR1 stimulate xylose isomerase activity and anaerobic growth on xylose of engineered Saccharomyces cerevisiae by influencing manganese homeostasis.Verhoeven MD, Lee M, Kamoen L, van den Broek M, Janssen DB, Daran JG, van Maris AJ, Pronk JT.Verhoeven MD, et al.Sci Rep. 2017 Apr 12;7:46155. doi: 10.1038/srep46155.Sci Rep. 2017.PMID:28401919Free PMC article.
- Influence of genetic background of engineered xylose-fermenting industrial Saccharomyces cerevisiae strains for ethanol production from lignocellulosic hydrolysates.Lopes DD, Rosa CA, Hector RE, Dien BS, Mertens JA, Ayub MAZ.Lopes DD, et al.J Ind Microbiol Biotechnol. 2017 Nov;44(11):1575-1588. doi: 10.1007/s10295-017-1979-z. Epub 2017 Sep 11.J Ind Microbiol Biotechnol. 2017.PMID:28891041
- Enhanced xylose fermentation and ethanol production by engineered Saccharomyces cerevisiae strain.Vilela Lde F, de Araujo VP, Paredes Rde S, Bon EP, Torres FA, Neves BC, Eleutherio EC.Vilela Lde F, et al.AMB Express. 2015 Feb 26;5:16. doi: 10.1186/s13568-015-0102-y. eCollection 2015.AMB Express. 2015.PMID:25852993Free PMC article.
References
Related information
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases