Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

BioMed Central full text link BioMed Central Free PMC article
Full text links

Actions

Share

.2013 May 30;6(1):84.
doi: 10.1186/1754-6834-6-84.

Growth and fermentation of D-xylose by Saccharomyces cerevisiae expressing a novel D-xylose isomerase originating from the bacterium Prevotella ruminicola TC2-24

Affiliations

Growth and fermentation of D-xylose by Saccharomyces cerevisiae expressing a novel D-xylose isomerase originating from the bacterium Prevotella ruminicola TC2-24

Ronald E Hector et al. Biotechnol Biofuels..

Abstract

Background: Saccharomyces cerevisiae strains expressing D-xylose isomerase (XI) produce some of the highest reported ethanol yields from D-xylose. Unfortunately, most bacterial XIs that have been expressed in S. cerevisiae are either not functional, require additional strain modification, or have low affinity for D-xylose. This study analyzed several XIs from rumen and intestinal microorganisms to identify enzymes with improved properties for engineering S. cerevisiae for D-xylose fermentation.

Results: Four XIs originating from rumen and intestinal bacteria were isolated and expressed in a S. cerevisiae CEN.PK2-1C parental strain primed for D-xylose metabolism by over expression of its native D-xylulokinase. Three of the XIs were functional in S. cerevisiae, based on the strain's ability to grow in D-xylose medium. The most promising strain, expressing the XI mined from Prevotella ruminicola TC2-24, was further adapted for aerobic and fermentative growth by serial transfers of D-xylose cultures under aerobic, and followed by microaerobic conditions. The evolved strain had a specific growth rate of 0.23 h-1 on D-xylose medium, which is comparable to the best reported results for analogous S. cerevisiae strains including those expressing the Piromyces sp. E2 XI. When used to ferment D-xylose, the adapted strain produced 13.6 g/L ethanol in 91 h with a metabolic yield of 83% of theoretical. From analysis of the P. ruminicola XI, it was determined the enzyme possessed a Vmax of 0.81 μmole/min/mg protein and a Km of 34 mM.

Conclusion: This study identifies a new xylose isomerase from the rumen bacterium Prevotella ruminicola TC2-24 that has one of the highest affinities and specific activities compared to other bacterial and fungal D-xylose isomerases expressed in yeast. When expressed in S. cerevisiae and used to ferment D-xylose, very high ethanol yield was obtained. This new XI should be a promising resource for constructing other D-xylose fermenting strains, including industrial yeast genetic backgrounds.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Comparison ofSaccharomyces cerevisiaestrains engineered to express various D-xylose isomerase and D-xylulokinase genes. A) Strains were cultured under aerobic conditions using YP medium with 50 g/L D-xylose. Cultures were incubated at 30°C, shaking at 1000 rpm using a BioLector®. Cell density was measured every 30 minutes. Data shown are mean values from experiments performed in triplicate.B) Strains were cultured under microaerobic conditions using YP medium with 50 g/L D-xylose. Cultures were incubated at 30°C using a Bioscreen C™. Cell density was measured every 30 minutes. Data shown are the average values from three biological replicates. The standard deviation for most values was less than 5%. PanelB uses the same legend as in panelA.
Figure 2
Figure 2
Adaptation of strain YRH631 to create strain YRH1114. Strain YRH631, expressing thePrevotella ruminicola XI and XK genes was cultured under microaerobic conditions and passaged every seven days. Remaining D-xylose and the fermentation products ethanol and xylitol was measured prior to each passage. Data shown are from one of two replicates.
Figure 3
Figure 3
Growth curves for the adaptedSaccharomyces cerevisiaestrain engineered to express theP. ruminicolaD-xylose isomerase and D-xylulokinase genes. A) Strains were cultured under aerobic conditions in YP medium with 50 g/L D-xylose. Cultures were incubated at 30°C, shaking at 1000 rpm using a BioLector®. Cell density was measured every 30 minutes. Data shown are mean values from experiments performed in triplicate.B) Strains were cultured under microaerobic conditions using YP medium with 50 g/L D-xylose. Cultures were incubated at 30°C using a Bioscreen C™. Cell density was measured every 30 minutes. Data shown are the average values from three biological replicates. The standard deviation for most values was less than 5%. PanelB uses the same legend as in panelA.
Figure 4
Figure 4
Comparison of D-xylose fermentation usingSaccharomyces cerevisiaestrains engineered to express theP. ruminicolaD-xylose isomerase and D-xylulokinase genes vs. expression of theScheffersomyces stipitisD-xylose reductase and xylitol dehydrogenase genes. Fermentations were performed using YP medium with 50 g/L D-xylose. Pressure was measured every 15 minutes and converted to mmoles of CO2. Data shown are from a single representative fermentation from experiments performed in triplicate.
See this image and copyright information in PMC

Similar articles

See all similar articles

Cited by

See all "Cited by" articles

References

    1. Bettiga M, Bengtsson O, Hahn-Hägerdal B, Gorwa-Grauslund MF. Arabinose and xylose fermentation by recombinant Saccharomyces cerevisiae expressing a fungal pentose utilization pathway. Microb Cell Fact. 2009;8:40. doi: 10.1186/1475-2859-8-40. - DOI - PMC - PubMed
    1. Bera AK, Sedlak M, Khan A, Ho NWY. Establishment of l-arabinose fermentation in glucose/xylose co-fermenting recombinant Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering. Appl Microbiol Biotechnol. 2010;87:1803–1811. doi: 10.1007/s00253-010-2609-0. - DOI - PubMed
    1. Van-Vleet JH, Jeffries TW. Yeast metabolic engineering for hemicellulosic ethanol production. Curr Opin Biotechnol. 2009;20:300–306. doi: 10.1016/j.copbio.2009.06.001. - DOI - PubMed
    1. Hahn-Hägerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF. Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol. 2007;74:937–953. doi: 10.1007/s00253-006-0827-2. - DOI - PubMed
    1. Scalcinati G, Otero JM, Van-Vleet JR, Jeffries TW, Olsson L, Nielsen J. Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption. FEMS Yeast Res. 2012;12:582–597. doi: 10.1111/j.1567-1364.2012.00808.x. - DOI - PubMed

Related information

LinkOut - more resources

Full text links
BioMed Central full text link BioMed Central Free PMC article
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp