Porcine E. coli: virulence-associated genes, resistance genes and adhesion and probiotic activity tested by a new screening method
- PMID:23658605
- PMCID: PMC3637259
- DOI: 10.1371/journal.pone.0059242
Porcine E. coli: virulence-associated genes, resistance genes and adhesion and probiotic activity tested by a new screening method
Abstract
We established an automated screening method to characterize adhesion of Escherichia coli to intestinal porcine epithelial cells (IPEC-J2) and their probiotic activity against infection by enteropathogenic E. coli (EPEC). 104 intestinal E. coli isolates from domestic pigs were tested by PCR for the occurrence of virulence-associated genes, genes coding for resistances to antimicrobial agents and metals, and for phylogenetic origin by PCR. Adhesion rates and probiotic activity were examined for correlation with the presence of these genes. Finally, data were compared with those from 93 E. coli isolates from wild boars. Isolates from domestic pigs carried a broad variety of all tested genes and showed great diversity in gene patterns. Adhesions varied with a maximum of 18.3 or 24.2 mean bacteria adherence per epithelial cell after 2 or 6 hours respectively. Most isolates from domestic pigs and wild boars showed low adherence, with no correlation between adhesion/probiotic activity and E. coli genes or gene clusters. The gene sfa/foc, encoding for a subunit of F1C fimbriae did show a positive correlative association with adherence and probiotic activity; however E. coli isolates from wild boars with the sfa/foc gene showed less adhesion and probiotic activity than E. coli with the sfa/foc gene isolated from domestic pigs after 6 hour incubation. In conclusion, screening porcine E. coli for virulence associated genes genes, adhesion to intestinal epithelial cells, and probiotic activity revealed a single important adhesion factor, several probiotic candidates, and showed important differences between E. coli of domestic pigs and wild boars.
Conflict of interest statement
Figures





Similar articles
- Role of F1C fimbriae, flagella, and secreted bacterial components in the inhibitory effect of probiotic Escherichia coli Nissle 1917 on atypical enteropathogenic E. coli infection.Kleta S, Nordhoff M, Tedin K, Wieler LH, Kolenda R, Oswald S, Oelschlaeger TA, Bleiss W, Schierack P.Kleta S, et al.Infect Immun. 2014 May;82(5):1801-12. doi: 10.1128/IAI.01431-13. Epub 2014 Feb 18.Infect Immun. 2014.PMID:24549324Free PMC article.
- Analyses of intestinal commensal Escherichia coli strains from wild boars suggest adaptation to conventional pig production conditions.Römer A, Wieler LH, Schierack P.Römer A, et al.Vet Microbiol. 2012 Dec 28;161(1-2):122-9. doi: 10.1016/j.vetmic.2012.07.009. Epub 2012 Jul 17.Vet Microbiol. 2012.PMID:22857976
- Pathogenic potential and virulence genotypes of intestinal and faecal isolates of porcine post-weaning enteropathogenic Escherichia coli.Malik A, Nagy B, Kugler R, Szmolka A.Malik A, et al.Res Vet Sci. 2017 Dec;115:102-108. doi: 10.1016/j.rvsc.2017.02.002. Epub 2017 Feb 9.Res Vet Sci. 2017.PMID:28231471
- [Molecular pathogenesis, epidemiology and diagnosis of enteropathogenic Escherichia coli].Vidal JE, Canizález-Román A, Gutiérrez-Jiménez J, Navarro-García F.Vidal JE, et al.Salud Publica Mex. 2007 Sep-Oct;49(5):376-86. doi: 10.1590/s0036-36342007000500008.Salud Publica Mex. 2007.PMID:17952245Review.Spanish.
- Typical and atypical enteropathogenic Escherichia coli.Trabulsi LR, Keller R, Tardelli Gomes TA.Trabulsi LR, et al.Emerg Infect Dis. 2002 May;8(5):508-13. doi: 10.3201/eid0805.010385.Emerg Infect Dis. 2002.PMID:11996687Free PMC article.Review.
Cited by
- Invasin gimB found in a bovine intestinal Escherichia coli with an adherent and invasive profile.Matter LB, Spricigo DA, Tasca C, Vargas AC.Matter LB, et al.Braz J Microbiol. 2015 Jul 1;46(3):875-8. doi: 10.1590/S1517-838246320140621. eCollection 2015 Jul-Sep.Braz J Microbiol. 2015.PMID:26413073Free PMC article.
- Proteomic Screening for Prediction and Design of Antimicrobial Peptides with AmpGram.Burdukiewicz M, Sidorczuk K, Rafacz D, Pietluch F, Chilimoniuk J, Rödiger S, Gagat P.Burdukiewicz M, et al.Int J Mol Sci. 2020 Jun 17;21(12):4310. doi: 10.3390/ijms21124310.Int J Mol Sci. 2020.PMID:32560350Free PMC article.
- Prevalence of virulence determinants and antimicrobial resistance among commensal Escherichia coli derived from dairy and beef cattle.Bok E, Mazurek J, Stosik M, Wojciech M, Baldy-Chudzik K.Bok E, et al.Int J Environ Res Public Health. 2015 Jan 19;12(1):970-85. doi: 10.3390/ijerph120100970.Int J Environ Res Public Health. 2015.PMID:25607605Free PMC article.
- Quantitative analysis of commensal Escherichia coli populations reveals host-specific enterotypes at the intra-species level.Smati M, Clermont O, Bleibtreu A, Fourreau F, David A, Daubié AS, Hignard C, Loison O, Picard B, Denamur E.Smati M, et al.Microbiologyopen. 2015 Aug;4(4):604-15. doi: 10.1002/mbo3.266. Epub 2015 May 29.Microbiologyopen. 2015.PMID:26033772Free PMC article.
- Effect of different feed ingredients and additives on IPEC-J2 cells challenged with an enterotoxigenic Escherichia coli strain.Spitzer F, Speiser S, Vahjen W, Zentek J.Spitzer F, et al.Cytotechnology. 2016 Aug;68(4):1463-71. doi: 10.1007/s10616-015-9905-6. Epub 2015 Aug 15.Cytotechnology. 2016.PMID:26275434Free PMC article.
References
Publication types
MeSH terms
Substances
Related information
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources