Structural, kinetic and chemical mechanism of isocitrate dehydrogenase-1 from Mycobacterium tuberculosis
- PMID:23409873
- PMCID: PMC3706558
- DOI: 10.1021/bi400037w
Structural, kinetic and chemical mechanism of isocitrate dehydrogenase-1 from Mycobacterium tuberculosis
Abstract
Mycobacterium tuberculosis (Mtb) is the leading cause of death due to a bacterial infection. The success of the Mtb pathogen has largely been attributed to the nonreplicating, persistence phase of the life cycle, for which the glyoxylate shunt is required. In Escherichia coli, flux through the shunt is controlled by regulation of isocitrate dehydrogenase (ICDH). In Mtb, the mechanism of regulation is unknown, and currently, there is no mechanistic or structural information about ICDH. We optimized expression and purification to a yield sufficiently high to perform the first detailed kinetic and structural studies of Mtb ICDH-1. A large solvent kinetic isotope effect [(D2O)V = 3.0 ± 0.2, and (D2O)(V/Kisocitrate) = 1.5 ± 0.3] and a smaller primary kinetic isotope effect [(D)V = 1.3 ± 0.1, and (D)(V/K[2R-(2)H]isocitrate) = 1.5 ± 0.2] allowed us to perform the first multiple kinetic isotope effect studies on any ICDH and suggest a chemical mechanism. In this mechanism, protonation of the enolate to form product α-ketoglutarate is the rate-limiting step. We report the first structure of Mtb ICDH-1 to 2.18 Å by X-ray crystallography with NADPH and Mn(2+) bound. It is a homodimer in which each subunit has a Rossmann fold, and a common top domain of interlocking β sheets. Mtb ICDH-1 is most structurally similar to the R132H mutant human ICDH found in glioblastomas. Similar to human R132H ICDH, Mtb ICDH-1 also catalyzes the formation of α-hydroxyglutarate. Our data suggest that regulation of Mtb ICDH-1 is novel.
Figures







References
- Dunn MF, Ramirez-Trujillo JA, Hernandez-Lucas I. Major roles of isocitrate lyase and malate synthase in bacterial and fungal pathogenesis. Microbiology. 2009;155:3166–3175. - PubMed
- McKinney JD, Honer zu Bentrup K, Munoz-Elias EJ, Miczak A, Chen B, Chan WT, Swenson D, Sacchettini JC, Jacobs WR, Jr., Russell DG. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature. 2000;406:735–738. - PubMed
- Zhang Y. The magic bullets and tuberculosis drug targets. Annual review of pharmacology and toxicology. 2005;45:529–564. - PubMed
- LaPorte DC, Chung T. A single gene codes for the kinase and phosphatase which regulate isocitrate dehydrogenase. J Biol Chem. 1985;260:15291–15297. - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
