Phylogenetic Relationships among the Cryptophyta: Analyses of Nuclear-Encoded SSU rRNA Sequences Support the Monophyly of Extant Plastid-Containing Lineages
- PMID:23194638
- DOI: 10.1016/S1434-4610(98)70033-1
Phylogenetic Relationships among the Cryptophyta: Analyses of Nuclear-Encoded SSU rRNA Sequences Support the Monophyly of Extant Plastid-Containing Lineages
Abstract
The Cryptophyta comprise photoautotrophic protists with complex plastids which harbor a remnant eukaryotic nucleus (nucleomorph) and a few heterotrophic taxa which either lack a plastid (Goniomonas) or contain a complex plastid devoid of pigments (Ieucoplast; Chilomonas). To resolve the phylogenetic relationships between photosynthetic, leucoplast-containing and aplastidial taxa, we determined complete nuclear-encoded SSU rRNA-sequences from 12 cryptophyte taxa representing the genera Cryptomonas, Chilomonas, Rhodomonas, Chroomonas, Hemiselmis, Proteomonas and Teleaulax and, as an outgroup taxon, Cyanoptyche gloeocystis (Glaucocystophyta). Phylogenetic analyses of SSU rRNA sequences from a total of 24 cryptophyte taxa rooted with 4 glaucocystophyte taxa using distance, parsimony and likelihood methods as well as LogDet transformations invariably position the aplastidial genus Goniomonas as a sister taxon to a monophyletic lineage consisting of all plastid containing cryptophytes including Chilomonas. Among the plastid-containing taxa, we identify six major clades each supported by high bootstrap values: clade I (Cryptomonas and Chilomonas), clade II (Rhodomonas, Pyrenomonas, Rhinomonas and Storeatula), clade III (Guillardia and the 'unidentified cryptophyte' strain CCMP 325), clade IV (Teleaulax and Geminigera), clade V (Proteomonas) and clade VI (Hemiselmis, Chroomonas and Komma). Clade I (Cryptomonas and Chilomonas) represents a sister group to clades II-VI which together form a monophyletic lineage; the phylogenetic relationships between clades II-VI remain largely unresolved. Chilomonas is positioned within the Cryptomonas clade and thus presumably evolved from a photosynthetic taxon of this genus. In our analysis the characters blue and red pigmentation do not correspond with a basal subdivision of the phylum, thus rejecting this character for higher-level classification of cryptophytes. However, different spectroscopic subtypes of phycoerythrin (PE I-III) and phycocyanin (PC II-IV) represent informative characters at a lower taxonomic level. Phycocyanin types are confined to the later diverging clade VI and within Hemiselmis, a species with phycocyanin is monophyletic with two species containing phycoerythrin. This supports previous molecular studies which demonstrated that the β subunit of all cryptophyte biliproteins, regardless of spectroscopic type, is phylogenetically derived from the red algal β-phycoerythrin gene family, therefore the cryptophyte phycocyanins presumably originated by chromophore replacement from phycoerythrin. Our phylogenetic analysis does not support a previous suggestion that the aplastidial cryptophyte Goniomonas evolved from an ancestor containing a complex cryptomonadtype plastid by nucleomorph and plastid loss.
Copyright © 1998 Elsevier GmbH. All rights reserved.
Similar articles
- MOLECULAR PHYLOGENY OF PHYCOCYANIN-CONTAINING CRYPTOPHYTES: EVOLUTION OF BILIPROTEINS AND GEOGRAPHICAL DISTRIBUTION(1).Hoef-Emden K.Hoef-Emden K.J Phycol. 2008 Aug;44(4):985-93. doi: 10.1111/j.1529-8817.2008.00530.x. Epub 2008 Jun 28.J Phycol. 2008.PMID:27041617
- The phylogenetic position of red algae revealed by multiple nuclear genes from mitochondria-containing eukaryotes and an alternative hypothesis on the origin of plastids.Nozaki H, Matsuzaki M, Takahara M, Misumi O, Kuroiwa H, Hasegawa M, Shin-i T, Kohara Y, Ogasawara N, Kuroiwa T.Nozaki H, et al.J Mol Evol. 2003 Apr;56(4):485-97. doi: 10.1007/s00239-002-2419-9.J Mol Evol. 2003.PMID:12664168
- Phylogenomic analysis supports the monophyly of cryptophytes and haptophytes and the association of rhizaria with chromalveolates.Hackett JD, Yoon HS, Li S, Reyes-Prieto A, Rümmele SE, Bhattacharya D.Hackett JD, et al.Mol Biol Evol. 2007 Aug;24(8):1702-13. doi: 10.1093/molbev/msm089. Epub 2007 May 7.Mol Biol Evol. 2007.PMID:17488740
- A HYPOTHESIS FOR PLASTID EVOLUTION IN CHROMALVEOLATES(1).Sanchez-Puerta MV, Delwiche CF.Sanchez-Puerta MV, et al.J Phycol. 2008 Oct;44(5):1097-107. doi: 10.1111/j.1529-8817.2008.00559.x. Epub 2008 Sep 3.J Phycol. 2008.PMID:27041706Review.
- On the phylogenetic relationships among tetraphyllidean, lecanicephalidean and diphyllidean tapeworm genera.Caira JN, Jensen K, Healy CJ.Caira JN, et al.Syst Parasitol. 1999 Feb;42(2):77-151. doi: 10.1023/a:1006192603349.Syst Parasitol. 1999.PMID:10612438Review.
Cited by
- Hidden genetic diversity in the green alga Spirogyra (Zygnematophyceae, Streptophyta).Chen C, Barfuss MH, Pröschold T, Schagerl M.Chen C, et al.BMC Evol Biol. 2012 Jun 1;12:77. doi: 10.1186/1471-2148-12-77.BMC Evol Biol. 2012.PMID:22655677Free PMC article.
- Uncovering Unique Green Algae and Cyanobacteria Isolated from Biocrusts in Highly Saline Potash Tailing Pile Habitats, Using an Integrative Approach.Sommer V, Mikhailyuk T, Glaser K, Karsten U.Sommer V, et al.Microorganisms. 2020 Oct 27;8(11):1667. doi: 10.3390/microorganisms8111667.Microorganisms. 2020.PMID:33121104Free PMC article.
- The extent of protist diversity: insights from molecular ecology of freshwater eukaryotes.Slapeta J, Moreira D, López-García P.Slapeta J, et al.Proc Biol Sci. 2005 Oct 7;272(1576):2073-81. doi: 10.1098/rspb.2005.3195.Proc Biol Sci. 2005.PMID:16191619Free PMC article.
- Shedding light on vampires: the phylogeny of vampyrellid amoebae revisited.Hess S, Sausen N, Melkonian M.Hess S, et al.PLoS One. 2012;7(2):e31165. doi: 10.1371/journal.pone.0031165. Epub 2012 Feb 15.PLoS One. 2012.PMID:22355342Free PMC article.
- Multiple independent losses of photosynthesis and differing evolutionary rates in the genus Cryptomonas (Cryptophyceae): combined phylogenetic analyses of DNA sequences of the nuclear and the nucleomorph ribosomal operons.Hoef-Emden K.Hoef-Emden K.J Mol Evol. 2005 Feb;60(2):183-95. doi: 10.1007/s00239-004-0089-5.J Mol Evol. 2005.PMID:15785847
Related information
LinkOut - more resources
Full Text Sources
Molecular Biology Databases