Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Atypon full text link Atypon
Full text links

Actions

Share

Comparative Study
.2012 Oct;18(5):477-88.
doi: 10.1177/1082013211433071.

Optimization of microwave vacuum drying of lotus (Nelumbo nucifera Gaertn.) seeds by response surface methodology

Affiliations
Comparative Study

Optimization of microwave vacuum drying of lotus (Nelumbo nucifera Gaertn.) seeds by response surface methodology

Yuting Tian et al. Food Sci Technol Int.2012 Oct.

Abstract

Drying is the main process used to treat lotus seeds for storage. In this study, response surface methodology was used to optimize processing methods for microwave vacuum (MWV) drying of lotus seeds and to create a desirable product. A central composite design with three important factors: microwave output power (2.0-4.0 kW), vacuum degree (-0.070 to -0.090 MPa) and on/off ratio (68/52 s to 99/21 s) was used to study the response variables of drying time, shrinkage ratio, rehydration ratio and whiteness index. The optimum conditions for MWV drying of lotus seeds were determined to obtain a minimal drying time, minimal shrinkage ratio, maximum rehydration ratio and maximum whiteness index. The optimum drying conditions were found to be: microwave output power 3.2 kW, vacuum degree -0.083 MPa and on/off ratio 94/26 s. Under these optimal conditions, drying time, shrinkage ratio, rehydration ratio and whiteness index were found to be 10 min, 37.66%, 157.1% and 68.83, respectively.

PubMed Disclaimer

Similar articles

See all similar articles

Cited by

Publication types

MeSH terms

Substances

Related information

LinkOut - more resources

Full text links
Atypon full text link Atypon
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp