Light gradients and optical microniches in coral tissues
- PMID:22969755
- PMCID: PMC3427877
- DOI: 10.3389/fmicb.2012.00316
Light gradients and optical microniches in coral tissues
Abstract
Light quantity and quality are among the most important factors determining the physiology and stress response of zooxanthellate corals. Yet, almost nothing is known about the light field that Symbiodinium experiences within their coral host, and the basic optical properties of coral tissue are unknown. We used scalar irradiance microprobes to characterize vertical and lateral light gradients within and across tissues of several coral species. Our results revealed the presence of steep light gradients with photosynthetically available radiation decreasing by about one order of magnitude from the tissue surface to the coral skeleton. Surface scalar irradiance was consistently higher over polyp tissue than over coenosarc tissue in faviid corals. Coral bleaching increased surface scalar irradiance by ~150% (between 500 and 700 nm) relative to a healthy coral. Photosynthesis peaked around 300 μm within the tissue, which corresponded to a zone exhibiting strongest depletion of scalar irradiance. Deeper coral tissue layers, e.g., ~1000 μm into aboral polyp tissues, harbor optical microniches, where only ~10% of the incident irradiance remains. We conclude that the optical microenvironment of corals exhibits strong lateral and vertical gradients of scalar irradiance, which are affected by both tissue and skeleton optical properties. Our results imply that zooxanthellae populations inhabit a strongly heterogeneous light environment and highlight the presence of different optical microniches in corals; an important finding for understanding the photobiology, stress response, as well as the phenotypic and genotypic plasticity of coral symbionts.
Keywords: bio-optics; coral photobiology; ecophysiology; microenvironment; microgradients; microsensor; tissue optics; zooxanthellae.
Figures








Similar articles
- Photosynthetic Acclimation of Symbiodinium in hospite Depends on Vertical Position in the Tissue of the Scleractinian Coral Montastrea curta.Lichtenberg M, Larkum AW, Kühl M.Lichtenberg M, et al.Front Microbiol. 2016 Feb 26;7:230. doi: 10.3389/fmicb.2016.00230. eCollection 2016.Front Microbiol. 2016.PMID:26955372Free PMC article.
- In vivo Microscale Measurements of Light and Photosynthesis during Coral Bleaching: Evidence for the Optical Feedback Loop?Wangpraseurt D, Holm JB, Larkum AW, Pernice M, Ralph PJ, Suggett DJ, Kühl M.Wangpraseurt D, et al.Front Microbiol. 2017 Jan 24;8:59. doi: 10.3389/fmicb.2017.00059. eCollection 2017.Front Microbiol. 2017.PMID:28174567Free PMC article.
- Light microenvironment and single-cell gradients of carbon fixation in tissues of symbiont-bearing corals.Wangpraseurt D, Pernice M, Guagliardo P, Kilburn MR, Clode PL, Polerecky L, Kühl M.Wangpraseurt D, et al.ISME J. 2016 Mar;10(3):788-92. doi: 10.1038/ismej.2015.133. Epub 2015 Aug 4.ISME J. 2016.PMID:26241503Free PMC article.
- Coral photobiology: new light on old views.Iluz D, Dubinsky Z.Iluz D, et al.Zoology (Jena). 2015 Apr;118(2):71-8. doi: 10.1016/j.zool.2014.08.003. Epub 2014 Nov 3.Zoology (Jena). 2015.PMID:25467066Review.
- Coral bleaching--capacity for acclimatization and adaptation.Coles SL, Brown BE.Coles SL, et al.Adv Mar Biol. 2003;46:183-223. doi: 10.1016/s0065-2881(03)46004-5.Adv Mar Biol. 2003.PMID:14601413Review.
Cited by
- Monte Carlo Modeling of Photon Propagation Reveals Highly Scattering Coral Tissue.Wangpraseurt D, Jacques SL, Petrie T, Kühl M.Wangpraseurt D, et al.Front Plant Sci. 2016 Sep 21;7:1404. doi: 10.3389/fpls.2016.01404. eCollection 2016.Front Plant Sci. 2016.PMID:27708657Free PMC article.
- Experimental Techniques to Assess Coral Physiologyin situ Under Global and Local Stressors: Current Approaches and Novel Insights.Dellisanti W, Chung JTH, Chow CFY, Wu J, Wells ML, Chan LL.Dellisanti W, et al.Front Physiol. 2021 Jun 7;12:656562. doi: 10.3389/fphys.2021.656562. eCollection 2021.Front Physiol. 2021.PMID:34163371Free PMC article.Review.
- Cytoklepty in the plankton: A host strategy to optimize the bioenergetic machinery of endosymbiotic algae.Uwizeye C, Mars Brisbin M, Gallet B, Chevalier F, LeKieffre C, Schieber NL, Falconet D, Wangpraseurt D, Schertel L, Stryhanyuk H, Musat N, Mitarai S, Schwab Y, Finazzi G, Decelle J.Uwizeye C, et al.Proc Natl Acad Sci U S A. 2021 Jul 6;118(27):e2025252118. doi: 10.1073/pnas.2025252118.Proc Natl Acad Sci U S A. 2021.PMID:34215695Free PMC article.
- Acclimatization of a coral-dinoflagellate mutualism at a CO2 vent.Prada F, Franzellitti S, Caroselli E, Cohen I, Marini M, Campanelli A, Sana L, Mancuso A, Marchini C, Puglisi A, Candela M, Mass T, Tassi F, LaJeunesse TC, Dubinsky Z, Falini G, Goffredo S.Prada F, et al.Commun Biol. 2023 Jan 18;6(1):66. doi: 10.1038/s42003-022-04327-3.Commun Biol. 2023.PMID:36653505Free PMC article.
- Light respiratory processes and gross photosynthesis in two scleractinian corals.Schrameyer V, Wangpraseurt D, Hill R, Kühl M, Larkum AW, Ralph PJ.Schrameyer V, et al.PLoS One. 2014 Oct 31;9(10):e110814. doi: 10.1371/journal.pone.0110814. eCollection 2014.PLoS One. 2014.PMID:25360746Free PMC article.
References
- Al-Horani F. A., Ferdelman T., Al-Moghrabi S. M, De Beer D. (2005). Spatial distribution of calcification and photosynthesis in the scleractinian coral Galaxea fascicularis. Coral Reefs 24 173–180
- Anderson R. R., Parrish J. A. (1981). The optics of human skin. J. Invest. Dermatol. 77 13–19 - PubMed
- Anthony K. R. N., Hoogenboom M. O., Connolly S. R. (2005). Adaptive variation in coral geometry and the optimization of internal colony light climates. Funct. Ecol. 19 17–26
- Brown B. E. (1997). Coral bleaching: causes and consequences. Coral Reefs 16 129–138
LinkOut - more resources
Full Text Sources