N-terminally glutamate-substituted analogue of gramicidin A as protonophore and selective mitochondrial uncoupler
- PMID:22911866
- PMCID: PMC3404012
- DOI: 10.1371/journal.pone.0041919
N-terminally glutamate-substituted analogue of gramicidin A as protonophore and selective mitochondrial uncoupler
Abstract
Limited uncoupling of oxidative phosphorylation could be beneficial for cells by preventing excessive generation of reactive oxygen species. Typical uncouplers are weak organic acids capable of permeating across membranes with a narrow gap between efficacy and toxicity. Aimed at designing a nontoxic uncoupler, the protonatable amino acid residue Glu was substituted for Val at the N-terminus of the pentadecapeptide gramicidin A (gA). The modified peptide [Glu1]gA exhibited high uncoupling activity in isolated mitochondria, in particular, abolishing membrane potential at the inner mitochondrial membrane with the same or even larger efficacy as gA. With mitochondria in cell culture, the depolarizing activity of [Glu1]gA was observed at concentrations by an order of magnitude lower than those of gA. On the contrary, [Glu1]gA was much less potent in forming proton channels in planar lipid bilayers than gA. Remarkably, at uncoupling concentrations, [Glu1]gA did not alter cell morphology and was nontoxic in MTT test, in contrast to gA showing high toxicity. The difference in the behavior of [Glu1]gA and gA in natural and artificial membranes could be ascribed to increased capability of [Glu1]gA to permeate through membranes and/or redistribute between different membranes. Based on the protective role of mild uncoupling, [Glu1]gA and some other proton-conducting gA analogues may be considered as prototypes of prospective therapeutic agents.
Conflict of interest statement
Figures







Similar articles
- Role of mitochondrial outer membrane in the uncoupling activity of N-terminally glutamate-substituted gramicidin A.Khailova LS, Rokitskaya TI, Kovalchuk SI, Kotova ЕА, Sorochkina AI, Antonenko YN.Khailova LS, et al.Biochim Biophys Acta Biomembr. 2019 Jan;1861(1):281-287. doi: 10.1016/j.bbamem.2018.06.013. Epub 2018 Jun 22.Biochim Biophys Acta Biomembr. 2019.PMID:29940153
- pH-Dependent properties of ion channels formed by N-terminally glutamate substituted gramicidin A in planar lipid bilayers.Chistyulin DK, Rokitskaya TI, Kovalchuk SI, Sorochkina AI, Firsov AM, Kotova EA, Antonenko YN.Chistyulin DK, et al.Biochim Biophys Acta Biomembr. 2017 May;1859(5):896-902. doi: 10.1016/j.bbamem.2017.02.004. Epub 2017 Feb 7.Biochim Biophys Acta Biomembr. 2017.PMID:28188740
- Proton conduction in gramicidin A and in its dioxolane-linked dimer in different lipid bilayers.Cukierman S, Quigley EP, Crumrine DS.Cukierman S, et al.Biophys J. 1997 Nov;73(5):2489-502. doi: 10.1016/S0006-3495(97)78277-8.Biophys J. 1997.PMID:9370442Free PMC article.
- Transmembrane Signaling with Lipid-Bilayer Assemblies as a Platform for Channel-Based Biosensing.Sugawara M.Sugawara M.Chem Rec. 2018 Apr;18(4):433-444. doi: 10.1002/tcr.201700046. Epub 2017 Nov 14.Chem Rec. 2018.PMID:29135061Review.
- Gramicidin channels.Andersen OS, Koeppe RE 2nd, Roux B.Andersen OS, et al.IEEE Trans Nanobioscience. 2005 Mar;4(1):10-20. doi: 10.1109/tnb.2004.842470.IEEE Trans Nanobioscience. 2005.PMID:15816168Review.
Cited by
- Effect of Site-Specific Intermolecular Lysine-Tryptophan Interactions on the Aggregation of Gramicidin-Based Peptides Leading to Pore Formation in Lipid Membranes.Firsov AM, Pogozheva ID, Kovalchuk SI, Kotova EA, Antonenko YN.Firsov AM, et al.J Membr Biol. 2018 Dec;251(5-6):633-640. doi: 10.1007/s00232-018-0040-0. Epub 2018 Jul 11.J Membr Biol. 2018.PMID:29995247
- Novel gramicidin formulations in cationic lipid as broad-spectrum microbicidal agents.Ragioto DA, Carrasco LD, Carmona-Ribeiro AM.Ragioto DA, et al.Int J Nanomedicine. 2014 Jun 30;9:3183-92. doi: 10.2147/IJN.S65289. eCollection 2014.Int J Nanomedicine. 2014.PMID:25061295Free PMC article.
- Discovery of gramicidin A analogues with altered activities by multidimensional screening of a one-bead-one-compound library.Takada Y, Itoh H, Paudel A, Panthee S, Hamamoto H, Sekimizu K, Inoue M.Takada Y, et al.Nat Commun. 2020 Oct 1;11(1):4935. doi: 10.1038/s41467-020-18711-2.Nat Commun. 2020.PMID:33004797Free PMC article.
- Cationic Nanostructures against Foodborne Pathogens.Carrasco LD, Bertolucci R Jr, Ribeiro RT, Sampaio JL, Carmona-Ribeiro AM.Carrasco LD, et al.Front Microbiol. 2016 Nov 9;7:1804. doi: 10.3389/fmicb.2016.01804. eCollection 2016.Front Microbiol. 2016.PMID:27881979Free PMC article.No abstract available.
- Gramicidin A: A New Mission for an Old Antibiotic.David JM, Rajasekaran AK.David JM, et al.J Kidney Cancer VHL. 2015 Jan 18;2(1):15-24. doi: 10.15586/jkcvhl.2015.21. eCollection 2015.J Kidney Cancer VHL. 2015.PMID:28326255Free PMC article.
References
- Mitchell P. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev. 1966;41:445–502. - PubMed
- Decoursey TE. Voltage-gated proton channels and other proton transfer pathways. Physiol Rev. 2003;83:475–579. - PubMed
- Skulachev VP. Uncoupling: new approaches to an old problem of bioenergetics. Biochim Biophys Acta 1363: 100–124. S0005–2728(97)00091–1 [pii] 1998. - PubMed
- Stuart JA, Brindle KM, Harper JA, Brand MD. Mitochondrial proton leak and the uncoupling proteins. J Bioenerg Biomembr. 1999;31:517–525. - PubMed
- Korshunov SS, Skulachev VP, Starkov AA. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett. 1997;416:15–18. - PubMed
Publication types
MeSH terms
Substances
Related information
LinkOut - more resources
Full Text Sources
Miscellaneous