Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Springer full text link Springer
Full text links

Actions

Review
.2012 Jul;403(9):2503-18.
doi: 10.1007/s00216-012-5892-z. Epub 2012 Apr 28.

Artificial sweeteners--a recently recognized class of emerging environmental contaminants: a review

Affiliations
Review

Artificial sweeteners--a recently recognized class of emerging environmental contaminants: a review

Frank T Lange et al. Anal Bioanal Chem.2012 Jul.

Abstract

An overview is given of existing trace analytical methods for the determination of seven popular artificial sweeteners [acesulfame (ACE), aspartame, cyclamate (CYC), neotame, neohesperidine dihydrochalcone, saccharin (SAC), and sucralose (SUC)] from aqueous environmental samples. Liquid chromatography-electrospray ionization tandem mass spectrometry and liquid chromatography-electrospray ionization high-resolution mass spectrometry are the methods most widely applied, either directly or after solid-phase extraction. Limits of detection and limits of quantification down to the low nanogram per liter range can be achieved. ACE, CYC, SAC, and SUC were detected in wastewater treatment plants in high microgram per liter concentrations. Per capita loads of individual sweeteners can vary within a wide range depending on their use in different countries. Whereas CYC and SAC are usually degraded by more than 90% during wastewater treatment, ACE and SUC pass through wastewater treatment plants mainly unchanged. This suggests their use as virtually perfect markers for the study of the impact of wastewater on source waters and drinking waters. In finished water of drinking water treatment plants using surface-water-influenced source water, ACE and SUC were detected in concentrations up to 7 and 2.4 μg/L, respectively. ACE was identified as a precursor of oxidation byproducts during ozonation, resulting in an aldehyde intermediate and acetic acid. Although the concentrations of ACE and SUC are among the highest measured for anthropogenic trace pollutants found in surface water, groundwater, and drinking water, the levels are at least three orders of magnitude lower than organoleptic threshold values. However, ecotoxicology studies are scarce and have focused on SUC. Thus, further research is needed both on identification of transformation products and on the ecotoxicological impact of artificial sweeteners and their transformation products.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources

Full text links
Springer full text link Springer
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp