Gene identification in the congenital disorders of glycosylation type I by whole-exome sequencing
- PMID:22492991
- DOI: 10.1093/hmg/dds123
Gene identification in the congenital disorders of glycosylation type I by whole-exome sequencing
Abstract
Congenital disorders of glycosylation type I (CDG-I) form a growing group of recessive neurometabolic diseases. Identification of disease genes is compromised by the enormous heterogeneity in clinical symptoms and the large number of potential genes involved. Until now, gene identification included the sequential application of biochemical methods in blood samples and fibroblasts. In genetically unsolved cases, homozygosity mapping has been applied in consanguineous families. Altogether, this time-consuming diagnostic strategy led to the identification of defects in 17 different CDG-I genes. Here, we applied whole-exome sequencing (WES) in combination with the knowledge of the protein N-glycosylation pathway for gene identification in our remaining group of six unsolved CDG-I patients from unrelated non-consanguineous families. Exome variants were prioritized based on a list of 76 potential CDG-I candidate genes, leading to the rapid identification of one known and two novel CDG-I gene defects. These included the first X-linked CDG-I due to a de novo mutation in ALG13, and compound heterozygous mutations in DPAGT1, together the first two steps in dolichol-PP-glycan assembly, and mutations in PGM1 in two cases, involved in nucleotide sugar biosynthesis. The pathogenicity of the mutations was confirmed by showing the deficient activity of the corresponding enzymes in patient fibroblasts. Combined with these results, the gene defect has been identified in 98% of our CDG-I patients. Our results implicate the potential of WES to unravel disease genes in the CDG-I in newly diagnosed singleton families.
Similar articles
- DPM2-CDG: a muscular dystrophy-dystroglycanopathy syndrome with severe epilepsy.Barone R, Aiello C, Race V, Morava E, Foulquier F, Riemersma M, Passarelli C, Concolino D, Carella M, Santorelli F, Vleugels W, Mercuri E, Garozzo D, Sturiale L, Messina S, Jaeken J, Fiumara A, Wevers RA, Bertini E, Matthijs G, Lefeber DJ.Barone R, et al.Ann Neurol. 2012 Oct;72(4):550-8. doi: 10.1002/ana.23632.Ann Neurol. 2012.PMID:23109149
- Molecular diagnostic testing for congenital disorders of glycosylation (CDG): detection rate for single gene testing and next generation sequencing panel testing.Jones MA, Rhodenizer D, da Silva C, Huff IJ, Keong L, Bean LJ, Coffee B, Collins C, Tanner AK, He M, Hegde MR.Jones MA, et al.Mol Genet Metab. 2013 Sep-Oct;110(1-2):78-85. doi: 10.1016/j.ymgme.2013.05.012. Epub 2013 May 28.Mol Genet Metab. 2013.PMID:23806237
- MPDU1 mutations underlie a novel human congenital disorder of glycosylation, designated type If.Schenk B, Imbach T, Frank CG, Grubenmann CE, Raymond GV, Hurvitz H, Korn-Lubetzki I, Revel-Vik S, Raas-Rotschild A, Luder AS, Jaeken J, Berger EG, Matthijs G, Hennet T, Aebi M.Schenk B, et al.J Clin Invest. 2001 Dec;108(11):1687-95. doi: 10.1172/JCI13419.J Clin Invest. 2001.PMID:11733564Free PMC article.
- Approaches to homozygosity mapping and exome sequencing for the identification of novel types of CDG.Matthijs G, Rymen D, Millón MB, Souche E, Race V.Matthijs G, et al.Glycoconj J. 2013 Jan;30(1):67-76. doi: 10.1007/s10719-012-9445-7. Epub 2012 Sep 15.Glycoconj J. 2013.PMID:22983704Review.
- Congenital disorders of glycosylation with emphasis on cerebellar involvement.Barone R, Fiumara A, Jaeken J.Barone R, et al.Semin Neurol. 2014 Jul;34(3):357-66. doi: 10.1055/s-0034-1387197. Epub 2014 Sep 5.Semin Neurol. 2014.PMID:25192513Review.
Cited by
- Clinical features in a large Iranian family with a limb-girdle congenital myasthenic syndrome due to a mutation in DPAGT1.Basiri K, Belaya K, Liu WW, Maxwell S, Sedghi M, Beeson D.Basiri K, et al.Neuromuscul Disord. 2013 Jun;23(6):469-72. doi: 10.1016/j.nmd.2013.03.003. Epub 2013 Apr 13.Neuromuscul Disord. 2013.PMID:23591138Free PMC article.
- The Metabolic Map into the Pathomechanism and Treatment of PGM1-CDG.Radenkovic S, Bird MJ, Emmerzaal TL, Wong SY, Felgueira C, Stiers KM, Sabbagh L, Himmelreich N, Poschet G, Windmolders P, Verheijen J, Witters P, Altassan R, Honzik T, Eminoglu TF, James PM, Edmondson AC, Hertecant J, Kozicz T, Thiel C, Vermeersch P, Cassiman D, Beamer L, Morava E, Ghesquière B.Radenkovic S, et al.Am J Hum Genet. 2019 May 2;104(5):835-846. doi: 10.1016/j.ajhg.2019.03.003. Epub 2019 Apr 11.Am J Hum Genet. 2019.PMID:30982613Free PMC article.
- TMEM199 Deficiency Is a Disorder of Golgi Homeostasis Characterized by Elevated Aminotransferases, Alkaline Phosphatase, and Cholesterol and Abnormal Glycosylation.Jansen JC, Timal S, van Scherpenzeel M, Michelakakis H, Vicogne D, Ashikov A, Moraitou M, Hoischen A, Huijben K, Steenbergen G, van den Boogert MA, Porta F, Calvo PL, Mavrikou M, Cenacchi G, van den Bogaart G, Salomon J, Holleboom AG, Rodenburg RJ, Drenth JP, Huynen MA, Wevers RA, Morava E, Foulquier F, Veltman JA, Lefeber DJ.Jansen JC, et al.Am J Hum Genet. 2016 Feb 4;98(2):322-30. doi: 10.1016/j.ajhg.2015.12.011. Epub 2016 Jan 28.Am J Hum Genet. 2016.PMID:26833330Free PMC article.
- Further Delineation of the ALG9-CDG Phenotype.AlSubhi S, AlHashem A, AlAzami A, Tlili K, AlShahwan S, Lefeber D, Alkuraya FS, Tabarki B.AlSubhi S, et al.JIMD Rep. 2016;27:107-12. doi: 10.1007/8904_2015_504. Epub 2015 Oct 10.JIMD Rep. 2016.PMID:26453364Free PMC article.
- Classical Galactosaemia and CDG, the N-Glycosylation Interface. A Review.Maratha A, Colhoun HO, Knerr I, Coss KP, Doran P, Treacy EP.Maratha A, et al.JIMD Rep. 2017;34:33-42. doi: 10.1007/8904_2016_5. Epub 2016 Aug 9.JIMD Rep. 2017.PMID:27502837Free PMC article.
Publication types
MeSH terms
Substances
Related information
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous