Past extreme warming events linked to massive carbon release from thawing permafrost
- PMID:22481362
- DOI: 10.1038/nature10929
Past extreme warming events linked to massive carbon release from thawing permafrost
Erratum in
- Nature. 2012 Oct 11;490(7419):292
Abstract
Between about 55.5 and 52 million years ago, Earth experienced a series of sudden and extreme global warming events (hyperthermals) superimposed on a long-term warming trend. The first and largest of these events, the Palaeocene-Eocene Thermal Maximum (PETM), is characterized by a massive input of carbon, ocean acidification and an increase in global temperature of about 5 °C within a few thousand years. Although various explanations for the PETM have been proposed, a satisfactory model that accounts for the source, magnitude and timing of carbon release at the PETM and successive hyperthermals remains elusive. Here we use a new astronomically calibrated cyclostratigraphic record from central Italy to show that the Early Eocene hyperthermals occurred during orbits with a combination of high eccentricity and high obliquity. Corresponding climate-ecosystem-soil simulations accounting for rising concentrations of background greenhouse gases and orbital forcing show that the magnitude and timing of the PETM and subsequent hyperthermals can be explained by the orbitally triggered decomposition of soil organic carbon in circum-Arctic and Antarctic terrestrial permafrost. This massive carbon reservoir had the potential to repeatedly release thousands of petagrams (10(15) grams) of carbon to the atmosphere-ocean system, once a long-term warming threshold had been reached just before the PETM. Replenishment of permafrost soil carbon stocks following peak warming probably contributed to the rapid recovery from each event, while providing a sensitive carbon reservoir for the next hyperthermal. As background temperatures continued to rise following the PETM, the areal extent of permafrost steadily declined, resulting in an incrementally smaller available carbon pool and smaller hyperthermals at each successive orbital forcing maximum. A mechanism linking Earth's orbital properties with release of soil carbon from permafrost provides a unifying model accounting for the salient features of the hyperthermals.
Similar articles
- Eocene global warming events driven by ventilation of oceanic dissolved organic carbon.Sexton PF, Norris RD, Wilson PA, Pälike H, Westerhold T, Röhl U, Bolton CT, Gibbs S.Sexton PF, et al.Nature. 2011 Mar 17;471(7338):349-52. doi: 10.1038/nature09826.Nature. 2011.PMID:21412336
- Continental warming preceding the Palaeocene-Eocene thermal maximum.Secord R, Gingerich PD, Lohmann KC, Macleod KG.Secord R, et al.Nature. 2010 Oct 21;467(7318):955-8. doi: 10.1038/nature09441.Nature. 2010.PMID:20962843
- Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia.Vonk JE, Sánchez-García L, van Dongen BE, Alling V, Kosmach D, Charkin A, Semiletov IP, Dudarev OV, Shakhova N, Roos P, Eglinton TI, Andersson A, Gustafsson O.Vonk JE, et al.Nature. 2012 Sep 6;489(7414):137-40. doi: 10.1038/nature11392.Nature. 2012.PMID:22932271
- Evidence for rapid climate change in the Mesozoic-Palaeogene greenhouse world.Jenkyns HC.Jenkyns HC.Philos Trans A Math Phys Eng Sci. 2003 Sep 15;361(1810):1885-916; discussion 1916. doi: 10.1098/rsta.2003.1240.Philos Trans A Math Phys Eng Sci. 2003.PMID:14558900Review.
- Climate change and the permafrost carbon feedback.Schuur EA, McGuire AD, Schädel C, Grosse G, Harden JW, Hayes DJ, Hugelius G, Koven CD, Kuhry P, Lawrence DM, Natali SM, Olefeldt D, Romanovsky VE, Schaefer K, Turetsky MR, Treat CC, Vonk JE.Schuur EA, et al.Nature. 2015 Apr 9;520(7546):171-9. doi: 10.1038/nature14338.Nature. 2015.PMID:25855454Review.
Cited by
- Spatial patterns of climate change across the Paleocene-Eocene Thermal Maximum.Tierney JE, Zhu J, Li M, Ridgwell A, Hakim GJ, Poulsen CJ, Whiteford RDM, Rae JWB, Kump LR.Tierney JE, et al.Proc Natl Acad Sci U S A. 2022 Oct 18;119(42):e2205326119. doi: 10.1073/pnas.2205326119. Epub 2022 Oct 10.Proc Natl Acad Sci U S A. 2022.PMID:36215472Free PMC article.
- Surface ocean warming and acidification driven by rapid carbon release precedes Paleocene-Eocene Thermal Maximum.Babila TL, Penman DE, Standish CD, Doubrawa M, Bralower TJ, Robinson MM, Self-Trail JM, Speijer RP, Stassen P, Foster GL, Zachos JC.Babila TL, et al.Sci Adv. 2022 Mar 18;8(11):eabg1025. doi: 10.1126/sciadv.abg1025. Epub 2022 Mar 16.Sci Adv. 2022.PMID:35294237Free PMC article.
- Long- and short-term coupling of sea surface temperature and atmospheric CO2 during the late Paleocene and early Eocene.Harper DT, Hönisch B, Bowen GJ, Zeebe RE, Haynes LL, Penman DE, Zachos JC.Harper DT, et al.Proc Natl Acad Sci U S A. 2024 Sep 3;121(36):e2318779121. doi: 10.1073/pnas.2318779121. Epub 2024 Aug 26.Proc Natl Acad Sci U S A. 2024.PMID:39186648Free PMC article.
- Earth system feedback statistically extracted from the Indian Ocean deep-sea sediments recording Eocene hyperthermals.Yasukawa K, Nakamura K, Fujinaga K, Ikehara M, Kato Y.Yasukawa K, et al.Sci Rep. 2017 Sep 12;7(1):11304. doi: 10.1038/s41598-017-11470-z.Sci Rep. 2017.PMID:28900142Free PMC article.
- Potential of Climate Change and Herbivory to Affect the Release and Atmospheric Reactions of BVOCs from Boreal and Subarctic Forests.Yu H, Holopainen JK, Kivimäenpää M, Virtanen A, Blande JD.Yu H, et al.Molecules. 2021 Apr 15;26(8):2283. doi: 10.3390/molecules26082283.Molecules. 2021.PMID:33920862Free PMC article.Review.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous