Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Nature Publishing Group full text link Nature Publishing Group
Full text links

Actions

Share

.2012 Mar 25;11(5):432-5.
doi: 10.1038/nmat3280.

A super-oscillatory lens optical microscope for subwavelength imaging

A super-oscillatory lens optical microscope for subwavelength imaging

Edward T F Rogers et al. Nat Mater..

Abstract

The past decade has seen an intensive effort to achieve optical imaging resolution beyond the diffraction limit. Apart from the Pendry-Veselago negative index superlens, implementation of which in optics faces challenges of losses and as yet unattainable fabrication finesse, other super-resolution approaches necessitate the lens either to be in the near proximity of the object or manufactured on it, or work only for a narrow class of samples, such as intensely luminescent or sparse objects. Here we report a new super-resolution microscope for optical imaging that beats the diffraction limit of conventional instruments and the recently demonstrated near-field optical superlens and hyperlens. This non-invasive subwavelength imaging paradigm uses a binary amplitude mask for direct focusing of laser light into a subwavelength spot in the post-evanescent field by precisely tailoring the interference of a large number of beams diffracted from a nanostructured mask. The new technology, which--in principle--has no physical limits on resolution, could be universally used for imaging at any wavelength and does not depend on the luminescence of the object, which can be tens of micrometres away from the mask. It has been implemented as a straightforward modification of a conventional microscope showing resolution better than λ/6.

PubMed Disclaimer

Similar articles

See all similar articles

Cited by

See all "Cited by" articles

References

    1. Nat Commun. 2011;2:218 - PubMed
    1. Opt Express. 2009 Oct 12;17(21):18462-8 - PubMed
    1. Opt Express. 2009 Dec 21;17(26):23920-46 - PubMed
    1. Science. 2008 Feb 8;319(5864):810-3 - PubMed
    1. Nat Mater. 2008 Jun;7(6):420-2 - PubMed

Publication types

LinkOut - more resources

Full text links
Nature Publishing Group full text link Nature Publishing Group
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp