Peptidyl 3-hydroxyproline binding properties of type I collagen suggest a function in fibril supramolecular assembly
- PMID:22380708
- PMCID: PMC3314591
- DOI: 10.1021/bi2019139
Peptidyl 3-hydroxyproline binding properties of type I collagen suggest a function in fibril supramolecular assembly
Abstract
Proline residues in collagens are extensively hydroxylated post-translationally. A rare form of this modification, (3S,2S)-l-hydroxyproline (3Hyp), remains without a clear function. Disruption of the enzyme complex responsible for prolyl 3-hydroxylation results in severe forms of recessive osteogenesis imperfecta (OI). These OI types exhibit a loss of or reduction in the level of 3-hydroxylation at two proline residues, α1(I) Pro986 and α2(I) Pro707. Whether the resulting brittle bone phenotype is caused by the lack of the 3-hydroxyl addition or by another function of the enzyme complex is unknown. We have speculated that the most efficient mechanism for explaining the chemistry of collagen intermolecular cross-linking is for pairs of collagen molecules in register to be the subunit that assembles into fibrils. In this concept, the exposed hydroxyls from 3Hyp are positioned within mutually interactive binding motifs on adjacent collagen molecules that contribute through hydrogen bonding to the process of fibril supramolecular assembly. Here we report observations on the physical binding properties of 3Hyp in collagen chains from experiments designed to explore the potential for interaction using synthetic collagen-like peptides containing 3Hyp. Evidence of self-association was observed between a synthetic peptide containing 3Hyp and the CB6 domain of the α1(I) chain, which contains the single fully 3-hydroxylated proline. Using collagen from a case of severe recessive OI with a CRTAP defect, in which Pro986 was minimally 3-hydroxylated, such binding was not observed. Further study of the role of 3Hyp in supramolecular assembly is warranted for understanding the evolution of tissue-specific variations in collagen fibril organization.
Figures




Similar articles
- Location of 3-hydroxyproline residues in collagen types I, II, III, and V/XI implies a role in fibril supramolecular assembly.Weis MA, Hudson DM, Kim L, Scott M, Wu JJ, Eyre DR.Weis MA, et al.J Biol Chem. 2010 Jan 22;285(4):2580-90. doi: 10.1074/jbc.M109.068726. Epub 2009 Nov 23.J Biol Chem. 2010.PMID:19940144Free PMC article.
- A novel 3-hydroxyproline (3Hyp)-rich motif marks the triple-helical C terminus of tendon type I collagen.Eyre DR, Weis M, Hudson DM, Wu JJ, Kim L.Eyre DR, et al.J Biol Chem. 2011 Mar 11;286(10):7732-7736. doi: 10.1074/jbc.C110.195768. Epub 2011 Jan 14.J Biol Chem. 2011.PMID:21239503Free PMC article.
- Insights on the evolution of prolyl 3-hydroxylation sites from comparative analysis of chicken and Xenopus fibrillar collagens.Hudson DM, Weis M, Eyre DR.Hudson DM, et al.PLoS One. 2011 May 3;6(5):e19336. doi: 10.1371/journal.pone.0019336.PLoS One. 2011.PMID:21559283Free PMC article.
- Collagen prolyl 3-hydroxylation: a major role for a minor post-translational modification?Hudson DM, Eyre DR.Hudson DM, et al.Connect Tissue Res. 2013;54(4-5):245-51. doi: 10.3109/03008207.2013.800867. Epub 2013 Jun 21.Connect Tissue Res. 2013.PMID:23772978Free PMC article.Review.
- Null mutations in LEPRE1 and CRTAP cause severe recessive osteogenesis imperfecta.Marini JC, Cabral WA, Barnes AM.Marini JC, et al.Cell Tissue Res. 2010 Jan;339(1):59-70. doi: 10.1007/s00441-009-0872-0. Epub 2009 Oct 28.Cell Tissue Res. 2010.PMID:19862557Free PMC article.Review.
Cited by
- Bone collagen: new clues to its mineralization mechanism from recessive osteogenesis imperfecta.Eyre DR, Weis MA.Eyre DR, et al.Calcif Tissue Int. 2013 Oct;93(4):338-47. doi: 10.1007/s00223-013-9723-9. Epub 2013 Mar 19.Calcif Tissue Int. 2013.PMID:23508630Free PMC article.Review.
- L-Ascorbate Biosynthesis Involves Carbon Skeleton Rearrangement in the NematodeCaenorhabditis elegans.Yabuta Y, Nagata R, Aoki Y, Kariya A, Wada K, Yanagimoto A, Hara H, Bito T, Okamoto N, Yoshida S, Ishihara A, Watanabe F.Yabuta Y, et al.Metabolites. 2020 Aug 17;10(8):334. doi: 10.3390/metabo10080334.Metabolites. 2020.PMID:32824560Free PMC article.
- Posttranslational modifications in type I collagen from different tissues extracted from wild type and prolyl 3-hydroxylase 1 null mice.Pokidysheva E, Zientek KD, Ishikawa Y, Mizuno K, Vranka JA, Montgomery NT, Keene DR, Kawaguchi T, Okuyama K, Bächinger HP.Pokidysheva E, et al.J Biol Chem. 2013 Aug 23;288(34):24742-52. doi: 10.1074/jbc.M113.464156. Epub 2013 Jul 16.J Biol Chem. 2013.PMID:23861401Free PMC article.
- Genome-wide analysis identifies differential promoter methylation of Leprel2, Foxf1, Mmp25, Igfbp6, and Peg12 in murine tendinopathy.Trella KJ, Li J, Stylianou E, Wang VM, Frank JM, Galante J, Sandy JD, Plaas A, Wysocki R.Trella KJ, et al.J Orthop Res. 2017 May;35(5):947-955. doi: 10.1002/jor.23393. Epub 2016 Aug 29.J Orthop Res. 2017.PMID:27517731Free PMC article.
- P3h3-null and Sc65-null Mice Phenocopy the Collagen Lysine Under-hydroxylation and Cross-linking Abnormality of Ehlers-Danlos Syndrome Type VIA.Hudson DM, Weis M, Rai J, Joeng KS, Dimori M, Lee BH, Morello R, Eyre DR.Hudson DM, et al.J Biol Chem. 2017 Mar 3;292(9):3877-3887. doi: 10.1074/jbc.M116.762245. Epub 2017 Jan 23.J Biol Chem. 2017.PMID:28115524Free PMC article.
References
- Glimcher MJ, Krane SM. The organization and structure of bone, and the mechanism of calcification. In: Ramachandran GN, Gould BS, editors. Treatise on Collagen. II. Academic Press; New York: 1968. pp. 68–251.
- Berg RA, Prockop DJ. The thermal transition of a non-hydroxylated form of collagen. Evidence for a role for hydroxyproline in stabilizing the triple helix of collagen. Biochem Biophys Res Commun. 1973;52:115–120. - PubMed
- Morello R, Bertin TK, Chen Y, Hicks J, Tonachini L, Monticone M, Castagnola P, Rauch F, Glorieux FH, Vranka J, Bächinger HP, Pace JM, Schwarze U, Byers PH, Weis M, Fernandes RJ, Eyre DR, Yao Z, Boyce BF, Lee B. CRTAP is required for prolyl 3-hydroxylation and mutations cause recessive osteogenesis imperfecta. Cell. 2006;127:291–304. - PubMed
- Barnes AM, Chang W, Morello R, Cabral WA, Weis MA, Eyre DR, Leikin S, Makareeva E, Kuznetsova N, Uveges TE, Ashok A, Flor AW, Mulvihill JJ, Wilson PL, Sundaram UT, Lee B, Marini JC. Deficiency of cartilage-associated protein in recessive lethal osteogenesis imperfecta. N Engl J Med. 2006;355:2757–2764. - PMC - PubMed
- Cabral WA, Chang W, Barnes AM, Weis MA, Scott MA, Leikin S, Makareeva E, Kuznetsova NV, Rosenbaum KN, Tifft CJ, Bulas DI, Kozma C, Smith PA, Eyre DR, Marini JC. Prolyl 3-hydroxylase 1 deficiency causes a recessive metabolic bone disorder resembling lethal/severe osteogenesis imperfecta. Nat Genet. 2007;39:359–365. - PMC - PubMed
Publication types
MeSH terms
Substances
Related information
Grants and funding
- HD070394/HD/NICHD NIH HHS/United States
- AR37318/AR/NIAMS NIH HHS/United States
- R01 AR037318/AR/NIAMS NIH HHS/United States
- R01 AR036794/AR/NIAMS NIH HHS/United States
- R01 AR036794-26/AR/NIAMS NIH HHS/United States
- AR37694/AR/NIAMS NIH HHS/United States
- HD22657/HD/NICHD NIH HHS/United States
- P01 HD022657-23/HD/NICHD NIH HHS/United States
- P01 HD070394-01/HD/NICHD NIH HHS/United States
- P01 HD022657/HD/NICHD NIH HHS/United States
- R37 AR037318/AR/NIAMS NIH HHS/United States
- P01 HD070394/HD/NICHD NIH HHS/United States
- R37 AR037318-26/AR/NIAMS NIH HHS/United States
LinkOut - more resources
Full Text Sources