Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Elsevier Science full text link Elsevier Science Free PMC article
Full text links

Actions

Share

Review
.2012 Oct 1;62(4):2222-31.
doi: 10.1016/j.neuroimage.2012.02.018. Epub 2012 Feb 17.

The Human Connectome Project: a data acquisition perspective

Affiliations
Review

The Human Connectome Project: a data acquisition perspective

D C Van Essen et al. Neuroimage..

Abstract

The Human Connectome Project (HCP) is an ambitious 5-year effort to characterize brain connectivity and function and their variability in healthy adults. This review summarizes the data acquisition plans being implemented by a consortium of HCP investigators who will study a population of 1200 subjects (twins and their non-twin siblings) using multiple imaging modalities along with extensive behavioral and genetic data. The imaging modalities will include diffusion imaging (dMRI), resting-state fMRI (R-fMRI), task-evoked fMRI (T-fMRI), T1- and T2-weighted MRI for structural and myelin mapping, plus combined magnetoencephalography and electroencephalography (MEG/EEG). Given the importance of obtaining the best possible data quality, we discuss the efforts underway during the first two years of the grant (Phase I) to refine and optimize many aspects of HCP data acquisition, including a new 7T scanner, a customized 3T scanner, and improved MR pulse sequences.

Copyright © 2012 Elsevier Inc. All rights reserved.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Schematic summary for acquiring imaging, behavioral, and genetic data using MR and MEG/EEG scanners at three HCP data acquisition sites. Left: Behavioral testing, blood draws for genotyping, and scanning on a 3T Skyra will be carried out on 1200 healthy adults at Washington University (WashU). Center: Major data acquisition modalities are indicated in the center column; for task-fMRI and behavior, major domains are listed. Top right: A subset of 200 subjects will be scanned on a 7T Skyra at the University of Minnesota (UMinn). Bottom right: A subset of 100 subjects will be scanned using magnetoencephalography (MEG) and perhaps electroencephalography (EEG) at St. Louis University (SLU).
Fig. 2
Fig. 2
Relative SNR at the central k space point in diffusion imaging with 150, 100, 70, and 40 mT/m maximum gradients relative to maximum achievable with 300 mT/m when TE is minimized using the available gradient amplitude, calculated for white matter at different b-values ranging from 500 to 10,000.
Fig. 3
Fig. 3
The M-EPI pulse sequence compared with conventional EPI. Top left: EPI pulse sequence generates a single slice image during each readout train, which is repeated for each slice to scan the whole brain. The multiband technique replaces the single slice excitation pulse with multiband (MB) pulses to excite several slices simultaneously, which are then unaliased using array coil sensitivity profiles. As such, far fewer repeats are required to scan the whole brain. Bottom left: Multiplexed-EPI (M-EPI) pulse sequence combines the SIR approach with the MB technique: SIR consecutively excitess slices (s = 3 is shown in the pulse sequence diagram with pulses in red, blue and green) and reads them out in a single echo train, separated in time. Using MB pulses to simultaneously excitem slices instead of exciting each single slice in the SIR approach produces the M-EPI sequence, with a “slice acceleration” of (s ×m) leading to (s ×m) number of slices collected in a single echo train. Right: Each column shows four (of 60) slices from a whole brain (2 mm isotropic resolution) 3T data set obtained with the M-EPI technique, shown with the (s ×m) acceleration factors ranging from 4 to 12. Adapted with permission from Feinberg et al. (2010).
See this image and copyright information in PMC

Similar articles

  • Advances in diffusion MRI acquisition and processing in the Human Connectome Project.
    Sotiropoulos SN, Jbabdi S, Xu J, Andersson JL, Moeller S, Auerbach EJ, Glasser MF, Hernandez M, Sapiro G, Jenkinson M, Feinberg DA, Yacoub E, Lenglet C, Van Essen DC, Ugurbil K, Behrens TE; WU-Minn HCP Consortium.Sotiropoulos SN, et al.Neuroimage. 2013 Oct 15;80:125-43. doi: 10.1016/j.neuroimage.2013.05.057. Epub 2013 May 20.Neuroimage. 2013.PMID:23702418Free PMC article.
  • The Lifespan Human Connectome Project in Aging: An overview.
    Bookheimer SY, Salat DH, Terpstra M, Ances BM, Barch DM, Buckner RL, Burgess GC, Curtiss SW, Diaz-Santos M, Elam JS, Fischl B, Greve DN, Hagy HA, Harms MP, Hatch OM, Hedden T, Hodge C, Japardi KC, Kuhn TP, Ly TK, Smith SM, Somerville LH, Uğurbil K, van der Kouwe A, Van Essen D, Woods RP, Yacoub E.Bookheimer SY, et al.Neuroimage. 2019 Jan 15;185:335-348. doi: 10.1016/j.neuroimage.2018.10.009. Epub 2018 Oct 15.Neuroimage. 2019.PMID:30332613Free PMC article.
  • Towards HCP-Style macaque connectomes: 24-Channel 3T multi-array coil, MRI sequences and preprocessing.
    Autio JA, Glasser MF, Ose T, Donahue CJ, Bastiani M, Ohno M, Kawabata Y, Urushibata Y, Murata K, Nishigori K, Yamaguchi M, Hori Y, Yoshida A, Go Y, Coalson TS, Jbabdi S, Sotiropoulos SN, Kennedy H, Smith S, Van Essen DC, Hayashi T.Autio JA, et al.Neuroimage. 2020 Jul 15;215:116800. doi: 10.1016/j.neuroimage.2020.116800. Epub 2020 Apr 8.Neuroimage. 2020.PMID:32276072Free PMC article.
  • The UNC/UMN Baby Connectome Project (BCP): An overview of the study design and protocol development.
    Howell BR, Styner MA, Gao W, Yap PT, Wang L, Baluyot K, Yacoub E, Chen G, Potts T, Salzwedel A, Li G, Gilmore JH, Piven J, Smith JK, Shen D, Ugurbil K, Zhu H, Lin W, Elison JT.Howell BR, et al.Neuroimage. 2019 Jan 15;185:891-905. doi: 10.1016/j.neuroimage.2018.03.049. Epub 2018 Mar 22.Neuroimage. 2019.PMID:29578031Free PMC article.Review.
  • Mapping the human connectome using diffusion MRI at 300 mT/m gradient strength: Methodological advances and scientific impact.
    Fan Q, Eichner C, Afzali M, Mueller L, Tax CMW, Davids M, Mahmutovic M, Keil B, Bilgic B, Setsompop K, Lee HH, Tian Q, Maffei C, Ramos-Llordén G, Nummenmaa A, Witzel T, Yendiki A, Song YQ, Huang CC, Lin CP, Weiskopf N, Anwander A, Jones DK, Rosen BR, Wald LL, Huang SY.Fan Q, et al.Neuroimage. 2022 Jul 1;254:118958. doi: 10.1016/j.neuroimage.2022.118958. Epub 2022 Feb 23.Neuroimage. 2022.PMID:35217204Free PMC article.Review.
See all similar articles

Cited by

  • Large-scale Normative Modeling of Brain Microstructure.
    Villalón-Reina JE, Zhu AH, Nir TM, Thomopoulos SI, Laltoo E, Kushan L, Bearden CE, Jahanshad N, Thompson PM.Villalón-Reina JE, et al.2023 19th Int Symp Med Inf Process Anal SIPAIM (2023). 2023 Nov;2023:10.1109/SIPAIM56729.2023.10373451. doi: 10.1109/SIPAIM56729.2023.10373451.2023 19th Int Symp Med Inf Process Anal SIPAIM (2023). 2023.PMID:39479180Free PMC article.
  • Moderated t-tests for group-level fMRI analysis.
    Wang G, Muschelli J, Lindquist MA.Wang G, et al.Neuroimage. 2021 Aug 15;237:118141. doi: 10.1016/j.neuroimage.2021.118141. Epub 2021 May 4.Neuroimage. 2021.PMID:33962000Free PMC article.
  • Individual characteristics outperform resting-state fMRI for the prediction of behavioral phenotypes.
    Omidvarnia A, Sasse L, Larabi DI, Raimondo F, Hoffstaedter F, Kasper J, Dukart J, Petersen M, Cheng B, Thomalla G, Eickhoff SB, Patil KR.Omidvarnia A, et al.Commun Biol. 2024 Jun 26;7(1):771. doi: 10.1038/s42003-024-06438-5.Commun Biol. 2024.PMID:38926486Free PMC article.
  • The Lamellar Structure of the Brain Fiber Pathways.
    Galinsky VL, Frank LR.Galinsky VL, et al.Neural Comput. 2016 Nov;28(11):2533-2556. doi: 10.1162/NECO_a_00896. Epub 2016 Sep 14.Neural Comput. 2016.PMID:27626966Free PMC article.
  • Open and reproducible neuroimaging: From study inception to publication.
    Niso G, Botvinik-Nezer R, Appelhoff S, De La Vega A, Esteban O, Etzel JA, Finc K, Ganz M, Gau R, Halchenko YO, Herholz P, Karakuzu A, Keator DB, Markiewicz CJ, Maumet C, Pernet CR, Pestilli F, Queder N, Schmitt T, Sójka W, Wagner AS, Whitaker KJ, Rieger JW.Niso G, et al.Neuroimage. 2022 Nov;263:119623. doi: 10.1016/j.neuroimage.2022.119623. Epub 2022 Sep 12.Neuroimage. 2022.PMID:36100172Free PMC article.Review.
See all "Cited by" articles

References

    1. Aboitiz F, Scheibel AB, Fisher RS, Zaidel E. Fiber composition of the human corpus callosum. Brain Res. 1992;598:143–153. - PubMed
    1. Achenbach TM, Krukowski RA, Dumenci L, Ivanova MY. Assessment of adult psychopathology: meta-analyses and implications of cross-informant correlations. Psychol. Bull. 2005;131:361–382. - PubMed
    1. Aganj I, Lenglet C, Sapiro G, Yacoub E, Ugurbil K, Harel N. Reconstruction of the orientation distribution function in single- and multiple-shell q-ball imaging within constant solid angle. Magn. Reson. Med. 2010;64:554–566. - PMC - PubMed
    1. Akil H, Martone ME, Van Essen DC. Challenges and opportunities in mining neuroscience data. Science. 2011;331:708–712. - PMC - PubMed
    1. Andersson S, Skare, Ashburner J. How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. NeuroImage. 2003;20:870–888. - PubMed

Publication types

MeSH terms

Grants and funding

LinkOut - more resources

Full text links
Elsevier Science full text link Elsevier Science Free PMC article
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp