Ligation of cytotoxic T lymphocyte antigen-4 to T cell receptor inhibits T cell activation and directs differentiation into Foxp3+ regulatory T cells
- PMID:22337882
- PMCID: PMC3322849
- DOI: 10.1074/jbc.M111.283705
Ligation of cytotoxic T lymphocyte antigen-4 to T cell receptor inhibits T cell activation and directs differentiation into Foxp3+ regulatory T cells
Abstract
Cross-linking of ligand-engaged cytotoxic T lymphocyte antigen-4 (CTLA-4) to the T cell receptor (TCR) during the early phase of T cell activation attenuates TCR signaling, leading to T cell inhibition. To promote this event, a bispecific fusion protein comprising a mutant mouse CD80 (CD80w88a) and lymphocyte activation antigen-3 was engineered to concurrently engage CTLA-4 and cross-link it to the TCR. Cross-linking is expected to be attained via ligation of CTLA-4 first to MHCII and then indirectly to the TCR, generating a CTLA-4-MHCII-TCR trimolecular complex that forms between T cells and antigen-presenting cells during T cell activation. Treating T cells with this bispecific fusion protein inhibited T cell activation. In addition, it induced the production of IL-10 and TGF-β and attenuated AKT and mTOR signaling. Intriguingly, treatment with the bispecific fusion protein also directed early T cell differentiation into Foxp3-positive regulatory T cells (Tregs). This process was dependent on the endogenous production of TGF-β. Thus, bispecific fusion proteins that engage CTLA-4 and co-ligate it to the TCR during the early phase of T cell activation can negatively regulate the T cell response. Bispecific biologics with such dual functions may therefore represent a novel class of therapeutics for immune modulation. These findings presented here also reveal a potential new role for CTLA-4 in Treg differentiation.
Figures






Similar articles
- A bispecific protein capable of engaging CTLA-4 and MHCII protects non-obese diabetic mice from autoimmune diabetes.Zhao H, Karman J, Jiang JL, Zhang J, Gumlaw N, Lydon J, Zhou Q, Qiu H, Jiang C, Cheng SH, Zhu Y.Zhao H, et al.PLoS One. 2013 May 21;8(5):e63530. doi: 10.1371/journal.pone.0063530. Print 2013.PLoS One. 2013.PMID:23704916Free PMC article.
- Tumor Progression Locus 2 (Tpl2) Activates the Mammalian Target of Rapamycin (mTOR) Pathway, Inhibits Forkhead Box P3 (FoxP3) Expression, and Limits Regulatory T Cell (Treg) Immunosuppressive Functions.Li X, Acuff NV, Peeks AR, Kirkland R, Wyatt KD, Nagy T, Watford WT.Li X, et al.J Biol Chem. 2016 Aug 5;291(32):16802-15. doi: 10.1074/jbc.M116.718783. Epub 2016 Jun 3.J Biol Chem. 2016.PMID:27261457Free PMC article.
- Integrated T-cell receptor and costimulatory signals determine TGF-β-dependent differentiation and maintenance of Foxp3+ regulatory T cells.Gabryšová L, Christensen JR, Wu X, Kissenpfennig A, Malissen B, O'Garra A.Gabryšová L, et al.Eur J Immunol. 2011 May;41(5):1242-8. doi: 10.1002/eji.201041073. Epub 2011 Apr 11.Eur J Immunol. 2011.PMID:21469110
- Control of regulatory T-cell differentiation and function by T-cell receptor signalling and Foxp3 transcription factor complexes.Ono M.Ono M.Immunology. 2020 May;160(1):24-37. doi: 10.1111/imm.13178. Epub 2020 Mar 9.Immunology. 2020.PMID:32022254Free PMC article.Review.
- Transcriptional control of regulatory T cell development and function.Luo CT, Li MO.Luo CT, et al.Trends Immunol. 2013 Nov;34(11):531-9. doi: 10.1016/j.it.2013.08.003. Epub 2013 Sep 6.Trends Immunol. 2013.PMID:24016547Free PMC article.Review.
Cited by
- Effect of regular circus physical exercises on lymphocytes in overweight children.Momesso dos Santos CM, Sato FT, Cury-Boaventura MF, Guirado-Rodrigues SH, Caçula KG, Gonçalves Santos CC, Hatanaka E, de Oliveira HH, Santos VC, Murata G, Borges-Silva CN, Hirabara SM, Pithon-Curi TC, Gorjão R.Momesso dos Santos CM, et al.PLoS One. 2015 Mar 31;10(3):e0120262. doi: 10.1371/journal.pone.0120262. eCollection 2015.PLoS One. 2015.PMID:25826263Free PMC article.
- A bispecific protein capable of engaging CTLA-4 and MHCII protects non-obese diabetic mice from autoimmune diabetes.Zhao H, Karman J, Jiang JL, Zhang J, Gumlaw N, Lydon J, Zhou Q, Qiu H, Jiang C, Cheng SH, Zhu Y.Zhao H, et al.PLoS One. 2013 May 21;8(5):e63530. doi: 10.1371/journal.pone.0063530. Print 2013.PLoS One. 2013.PMID:23704916Free PMC article.
- Innate and adaptive immune responses in asthma.Holgate ST.Holgate ST.Nat Med. 2012 May 4;18(5):673-83. doi: 10.1038/nm.2731.Nat Med. 2012.PMID:22561831Review.
- Checkpoint inhibitors in lung cancer: latest developments and clinical potential.Schvartsman G, Ferrarotto R, Massarelli E.Schvartsman G, et al.Ther Adv Med Oncol. 2016 Nov;8(6):460-473. doi: 10.1177/1758834016661164. Epub 2016 Jul 26.Ther Adv Med Oncol. 2016.PMID:27800034Free PMC article.Review.
- Role of cytokines in thymus- versus peripherally derived-regulatory T cell differentiation and function.Goldstein JD, Pérol L, Zaragoza B, Baeyens A, Marodon G, Piaggio E.Goldstein JD, et al.Front Immunol. 2013 Jun 19;4:155. doi: 10.3389/fimmu.2013.00155. eCollection 2013.Front Immunol. 2013.PMID:23801992Free PMC article.
References
- Eagar T. N., Karandikar N. J., Bluestone J. A., Miller S. D. (2002) The role of CTLA-4 in induction and maintenance of peripheral T cell tolerance. Eur. J. Immunol. 32, 972–981 - PubMed
- Tivol E. A., Borriello F., Schweitzer A. N., Lynch W. P., Bluestone J. A., Sharpe A. H. (1995) Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3, 541–547 - PubMed
- Walunas T. L., Bluestone J. A. (1998) CTLA-4 regulates tolerance induction and T cell differentiation in vivo. J. Immunol. 160, 3855–3860 - PubMed
MeSH terms
Substances
Related information
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous