Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses
- PMID:22319168
- DOI: 10.1093/molbev/mss020
Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses
Abstract
In phylogenetic analyses of molecular sequence data, partitioning involves estimating independent models of molecular evolution for different sets of sites in a sequence alignment. Choosing an appropriate partitioning scheme is an important step in most analyses because it can affect the accuracy of phylogenetic reconstruction. Despite this, partitioning schemes are often chosen without explicit statistical justification. Here, we describe two new objective methods for the combined selection of best-fit partitioning schemes and nucleotide substitution models. These methods allow millions of partitioning schemes to be compared in realistic time frames and so permit the objective selection of partitioning schemes even for large multilocus DNA data sets. We demonstrate that these methods significantly outperform previous approaches, including both the ad hoc selection of partitioning schemes (e.g., partitioning by gene or codon position) and a recently proposed hierarchical clustering method. We have implemented these methods in an open-source program, PartitionFinder. This program allows users to select partitioning schemes and substitution models using a range of information-theoretic metrics (e.g., the Bayesian information criterion, akaike information criterion [AIC], and corrected AIC). We hope that PartitionFinder will encourage the objective selection of partitioning schemes and thus lead to improvements in phylogenetic analyses. PartitionFinder is written in Python and runs under Mac OSX 10.4 and above. The program, source code, and a detailed manual are freely available from www.robertlanfear.com/partitionfinder.
Similar articles
- PartitionFinder 2: New Methods for Selecting Partitioned Models of Evolution for Molecular and Morphological Phylogenetic Analyses.Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B.Lanfear R, et al.Mol Biol Evol. 2017 Mar 1;34(3):772-773. doi: 10.1093/molbev/msw260.Mol Biol Evol. 2017.PMID:28013191
- Selecting optimal partitioning schemes for phylogenomic datasets.Lanfear R, Calcott B, Kainer D, Mayer C, Stamatakis A.Lanfear R, et al.BMC Evol Biol. 2014 Apr 17;14:82. doi: 10.1186/1471-2148-14-82.BMC Evol Biol. 2014.PMID:24742000Free PMC article.
- Searching for the optimal data partitioning strategy in mitochondrial phylogenomics: a phylogeny of Acridoidea (Insecta: Orthoptera: Caelifera) as a case study.Leavitt JR, Hiatt KD, Whiting MF, Song H.Leavitt JR, et al.Mol Phylogenet Evol. 2013 May;67(2):494-508. doi: 10.1016/j.ympev.2013.02.019. Epub 2013 Feb 27.Mol Phylogenet Evol. 2013.PMID:23454468
- Molecular-clock methods for estimating evolutionary rates and timescales.Ho SY, Duchêne S.Ho SY, et al.Mol Ecol. 2014 Dec;23(24):5947-65. doi: 10.1111/mec.12953. Epub 2014 Oct 30.Mol Ecol. 2014.PMID:25290107Review.
- Coalescent methods for estimating phylogenetic trees.Liu L, Yu L, Kubatko L, Pearl DK, Edwards SV.Liu L, et al.Mol Phylogenet Evol. 2009 Oct;53(1):320-8. doi: 10.1016/j.ympev.2009.05.033. Epub 2009 Jun 6.Mol Phylogenet Evol. 2009.PMID:19501178Review.
Cited by
- Complete mitochondrial genome of the summer heath fritillary butterfly,Mellicta ambigua (Lepidoptera: Nymphalidae).Kim MJ, Chu M, Park JS, Kim SS, Kim I.Kim MJ, et al.Mitochondrial DNA B Resour. 2021 May 7;6(5):1603-1605. doi: 10.1080/23802359.2021.1917318.Mitochondrial DNA B Resour. 2021.PMID:34027067Free PMC article.
- The first mitochondrial genome of the sepsid fly Nemopoda mamaevi Ozerov, 1997 (Diptera: Sciomyzoidea: Sepsidae), with mitochondrial genome phylogeny of cyclorrhapha.Li X, Ding S, Cameron SL, Kang Z, Wang Y, Yang D.Li X, et al.PLoS One. 2015 Mar 31;10(3):e0123594. doi: 10.1371/journal.pone.0123594. eCollection 2015.PLoS One. 2015.PMID:25826648Free PMC article.
- Functional innovation promotes diversification of form in the evolution of an ultrafast trap-jaw mechanism in ants.Booher DB, Gibson JC, Liu C, Longino JT, Fisher BL, Janda M, Narula N, Toulkeridou E, Mikheyev AS, Suarez AV, Economo EP.Booher DB, et al.PLoS Biol. 2021 Mar 2;19(3):e3001031. doi: 10.1371/journal.pbio.3001031. eCollection 2021 Mar.PLoS Biol. 2021.PMID:33651798Free PMC article.
- A new species ofAmolops (Amphibia, Anura, Ranidae) from Guizhou Province, China.Li SZ, Liu J, Ke XC, Cheng G, Wang B.Li SZ, et al.Zookeys. 2024 Jan 12;1189:33-54. doi: 10.3897/zookeys.1189.115621. eCollection 2024.Zookeys. 2024.PMID:38314114Free PMC article.
- New Indomalayan Nebularmis species (Heterotardigrada: Echiniscidae) provoke a discussion on its intrageneric diversity.Gąsiorek P, Vončina K, Ciosek J, Veloso M, Fontoura P, Michalczyk Ł.Gąsiorek P, et al.Zoological Lett. 2021 Apr 12;7(1):6. doi: 10.1186/s40851-021-00172-0.Zoological Lett. 2021.PMID:33845896Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources