Cathepsins B and L activate Ebola but not Marburg virus glycoproteins for efficient entry into cell lines and macrophages independent of TMPRSS2 expression
- PMID:22222211
- PMCID: PMC7111950
- DOI: 10.1016/j.virol.2011.11.031
Cathepsins B and L activate Ebola but not Marburg virus glycoproteins for efficient entry into cell lines and macrophages independent of TMPRSS2 expression
Abstract
Ebola (EBOV) and Marburg virus (MARV) cause severe hemorrhagic fever. The host cell proteases cathepsin B and L activate the Zaire ebolavirus glycoprotein (GP) for cellular entry and constitute potential targets for antiviral intervention. However, it is unclear if different EBOV species and MARV equally depend on cathepsin B/L activity for infection of cell lines and macrophages, important viral target cells. Here, we show that cathepsin B/L inhibitors markedly reduce 293T cell infection driven by the GPs of all EBOV species, independent of the type II transmembrane serine protease TMPRSS2, which cleaved but failed to activate EBOV-GPs. Similarly, a cathepsin B/L inhibitor blocked macrophage infection mediated by different EBOV-GPs. In contrast, MARV-GP-driven entry exhibited little dependence on cathepsin B/L activity. Still, MARV-GP-mediated entry was efficiently blocked by leupeptin. These results suggest that cathepsins B/L promote entry of EBOV while MARV might employ so far unidentified proteases for GP activation.
Copyright © 2011 Elsevier Inc. All rights reserved.
Figures






Similar articles
- Novel proteolytic activation of Ebolavirus glycoprotein GP by TMPRSS2 and cathepsin L at an uncharted position can compensate for furin cleavage.Bestle D, Bittel L, Werner AD, Kämper L, Dolnik O, Krähling V, Steinmetzer T, Böttcher-Friebertshäuser E.Bestle D, et al.Virus Res. 2024 Sep;347:199430. doi: 10.1016/j.virusres.2024.199430. Epub 2024 Jul 8.Virus Res. 2024.PMID:38964470Free PMC article.
- Inhibitors of signal peptide peptidase and subtilisin/kexin-isozyme 1 inhibit Ebola virus glycoprotein-driven cell entry by interfering with activity and cellular localization of endosomal cathepsins.Plegge T, Spiegel M, Krüger N, Nehlmeier I, Winkler M, González Hernández M, Pöhlmann S.Plegge T, et al.PLoS One. 2019 Apr 11;14(4):e0214968. doi: 10.1371/journal.pone.0214968. eCollection 2019.PLoS One. 2019.PMID:30973897Free PMC article.
- Calu-3 cells are largely resistant to entry driven by filovirus glycoproteins and the entry defect can be rescued by directed expression of DC-SIGN or cathepsin L.González-Hernández M, Müller A, Hoenen T, Hoffmann M, Pöhlmann S.González-Hernández M, et al.Virology. 2019 Jun;532:22-29. doi: 10.1016/j.virol.2019.03.020. Epub 2019 Apr 3.Virology. 2019.PMID:30999160Free PMC article.
- [Ebola and Marburg viruses: the humans strike back].Alazard-Dany N, Ottmann Terrangle M, Volchkov V.Alazard-Dany N, et al.Med Sci (Paris). 2006 Apr;22(4):405-10. doi: 10.1051/medsci/2006224405.Med Sci (Paris). 2006.PMID:16597410Review.French.
- Filovirus entry: a novelty in the viral fusion world.Hunt CL, Lennemann NJ, Maury W.Hunt CL, et al.Viruses. 2012 Feb;4(2):258-75. doi: 10.3390/v4020258. Epub 2012 Feb 7.Viruses. 2012.PMID:22470835Free PMC article.Review.
Cited by
- The Key Role of Lysosomal Protease Cathepsins in Viral Infections.Scarcella M, d'Angelo D, Ciampa M, Tafuri S, Avallone L, Pavone LM, De Pasquale V.Scarcella M, et al.Int J Mol Sci. 2022 Aug 13;23(16):9089. doi: 10.3390/ijms23169089.Int J Mol Sci. 2022.PMID:36012353Free PMC article.Review.
- Identification of a broad-spectrum antiviral small molecule against severe acute respiratory syndrome coronavirus and Ebola, Hendra, and Nipah viruses by using a novel high-throughput screening assay.Elshabrawy HA, Fan J, Haddad CS, Ratia K, Broder CC, Caffrey M, Prabhakar BS.Elshabrawy HA, et al.J Virol. 2014 Apr;88(8):4353-65. doi: 10.1128/JVI.03050-13. Epub 2014 Feb 5.J Virol. 2014.PMID:24501399Free PMC article.
- Cathepsins: Proteases that are vital for survival but can also be fatal.Patel S, Homaei A, El-Seedi HR, Akhtar N.Patel S, et al.Biomed Pharmacother. 2018 Sep;105:526-532. doi: 10.1016/j.biopha.2018.05.148. Epub 2018 Jun 6.Biomed Pharmacother. 2018.PMID:29885636Free PMC article.Review.
- Current landscape and future prospects of antiviral drugs derived from microbial products.Takizawa N, Yamasaki M.Takizawa N, et al.J Antibiot (Tokyo). 2017 Oct 11;71(1):45-52. doi: 10.1038/ja.2017.115. Online ahead of print.J Antibiot (Tokyo). 2017.PMID:29018267Free PMC article.Review.
- Evidence for distinct mechanisms of small molecule inhibitors of filovirus entry.Schafer A, Xiong R, Cooper L, Nowar R, Lee H, Li Y, Ramirez BE, Peet NP, Caffrey M, Thatcher GRJ, Saphire EO, Cheng H, Rong L.Schafer A, et al.PLoS Pathog. 2021 Feb 4;17(2):e1009312. doi: 10.1371/journal.ppat.1009312. eCollection 2021 Feb.PLoS Pathog. 2021.PMID:33539432Free PMC article.
References
- Aoyagi T., Takeuchi T., Matsuzaki A., Kawamura K., Kondo S. Leupeptins, new protease inhibitors from Actinomycetes. J. Antibiot. (Tokyo) 1969;22:283–286. - PubMed
- Bush G., diSibio G., Miyamoto A., Denault J.B., Leduc R., Weinmaster G. Ligand-induced signaling in the absence of furin processing of Notch1. Dev. Biol. 2001;229:494–502. - PubMed
Publication types
MeSH terms
Substances
Related information
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical