End-Cretaceous marine mass extinction not caused by productivity collapse
- PMID:22207626
- PMCID: PMC3271934
- DOI: 10.1073/pnas.1110601109
End-Cretaceous marine mass extinction not caused by productivity collapse
Abstract
An asteroid impact at the end of the Cretaceous caused mass extinction, but extinction mechanisms are not well-understood. The collapse of sea surface to sea floor carbon isotope gradients has been interpreted as reflecting a global collapse of primary productivity (Strangelove Ocean) or export productivity (Living Ocean), which caused mass extinction higher in the marine food chain. Phytoplankton-dependent benthic foraminifera on the deep-sea floor, however, did not suffer significant extinction, suggesting that export productivity persisted at a level sufficient to support their populations. We compare benthic foraminiferal records with benthic and bulk stable carbon isotope records from the Pacific, Southeast Atlantic, and Southern Oceans. We conclude that end-Cretaceous decrease in export productivity was moderate, regional, and insufficient to explain marine mass extinction. A transient episode of surface ocean acidification may have been the main cause of extinction of calcifying plankton and ammonites, and recovery of productivity may have been as fast in the oceans as on land.
Conflict of interest statement
The authors declare no conflict of interest.
Figures




Similar articles
- Rapid ocean acidification and protracted Earth system recovery followed the end-Cretaceous Chicxulub impact.Henehan MJ, Ridgwell A, Thomas E, Zhang S, Alegret L, Schmidt DN, Rae JWB, Witts JD, Landman NH, Greene SE, Huber BT, Super JR, Planavsky NJ, Hull PM.Henehan MJ, et al.Proc Natl Acad Sci U S A. 2019 Nov 5;116(45):22500-22504. doi: 10.1073/pnas.1905989116. Epub 2019 Oct 21.Proc Natl Acad Sci U S A. 2019.PMID:31636204Free PMC article.
- Rapid recovery of life at ground zero of the end-Cretaceous mass extinction.Lowery CM, Bralower TJ, Owens JD, Rodríguez-Tovar FJ, Jones H, Smit J, Whalen MT, Claeys P, Farley K, Gulick SPS, Morgan JV, Green S, Chenot E, Christeson GL, Cockell CS, Coolen MJL, Ferrière L, Gebhardt C, Goto K, Kring DA, Lofi J, Ocampo-Torres R, Perez-Cruz L, Pickersgill AE, Poelchau MH, Rae ASP, Rasmussen C, Rebolledo-Vieyra M, Riller U, Sato H, Tikoo SM, Tomioka N, Urrutia-Fucugauchi J, Vellekoop J, Wittmann A, Xiao L, Yamaguchi KE, Zylberman W.Lowery CM, et al.Nature. 2018 Jun;558(7709):288-291. doi: 10.1038/s41586-018-0163-6. Epub 2018 May 30.Nature. 2018.PMID:29849143Free PMC article.
- Mid Pleistocene foraminiferal mass extinction coupled with phytoplankton evolution.Kender S, McClymont EL, Elmore AC, Emanuele D, Leng MJ, Elderfield H.Kender S, et al.Nat Commun. 2016 Jun 17;7:11970. doi: 10.1038/ncomms11970.Nat Commun. 2016.PMID:27311937Free PMC article.
- Benthic foraminifera (Protista) as tools in deep-water palaeoceanography: environmental influences on faunal characteristics.Gooday AJ.Gooday AJ.Adv Mar Biol. 2003;46:1-90. doi: 10.1016/s0065-2881(03)46002-1.Adv Mar Biol. 2003.PMID:14601411Review.
- Marine Biodiversity, Biogeography, Deep-Sea Gradients, and Conservation.Costello MJ, Chaudhary C.Costello MJ, et al.Curr Biol. 2017 Jun 5;27(11):R511-R527. doi: 10.1016/j.cub.2017.04.060.Curr Biol. 2017.PMID:28586689Review.
Cited by
- Molecular phylogeny of two unusual brown algae, Phaeostrophion irregulare and Platysiphon glacialis, proposal of the Stschapoviales ord. nov. and Platysiphonaceae fam. nov., and a re-examination of divergence times for brown algal orders.Kawai H, Hanyuda T, Draisma SG, Wilce RT, Andersen RA.Kawai H, et al.J Phycol. 2015 Oct;51(5):918-28. doi: 10.1111/jpy.12332. Epub 2015 Sep 27.J Phycol. 2015.PMID:26986888Free PMC article.
- Thresholds of catastrophe in the Earth system.Rothman DH.Rothman DH.Sci Adv. 2017 Sep 20;3(9):e1700906. doi: 10.1126/sciadv.1700906. eCollection 2017 Sep.Sci Adv. 2017.PMID:28948221Free PMC article.
- Buoyancy control in ammonoid cephalopods refined by complex internal shell architecture.Peterman DJ, Ritterbush KA, Ciampaglio CN, Johnson EH, Inoue S, Mikami T, Linn TJ.Peterman DJ, et al.Sci Rep. 2021 Apr 13;11(1):8055. doi: 10.1038/s41598-021-87379-5.Sci Rep. 2021.PMID:33850189Free PMC article.
- New Age of Fishes initiated by the Cretaceous-Paleogene mass extinction.Sibert EC, Norris RD.Sibert EC, et al.Proc Natl Acad Sci U S A. 2015 Jul 14;112(28):8537-42. doi: 10.1073/pnas.1504985112. Epub 2015 Jun 29.Proc Natl Acad Sci U S A. 2015.PMID:26124114Free PMC article.
- Rapid ocean acidification and protracted Earth system recovery followed the end-Cretaceous Chicxulub impact.Henehan MJ, Ridgwell A, Thomas E, Zhang S, Alegret L, Schmidt DN, Rae JWB, Witts JD, Landman NH, Greene SE, Huber BT, Super JR, Planavsky NJ, Hull PM.Henehan MJ, et al.Proc Natl Acad Sci U S A. 2019 Nov 5;116(45):22500-22504. doi: 10.1073/pnas.1905989116. Epub 2019 Oct 21.Proc Natl Acad Sci U S A. 2019.PMID:31636204Free PMC article.
References
- Schulte P, et al. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science. 2010;327:1214–1218. - PubMed
- Kiessling W, Claeys PA. In: Geological and Biological Effects of Impact Events. Buffetaut E, Koeberl C, editors. Berlin: Springer; 2001. pp. 33–140.
- Kring DA. The Chicxulub impact event and its environmental consequences at the Cretaceous-Tertiary boundary. Palaeogeogr Palaeoclimatol Palaeoecol. 2007;255:4–21.
- Hsü KJ, McKenzie J. Broecker WS, Sundquist ET, editors. (AGU Geophysical Monographs).The Carbon Cycle and Atmospheric CO2: Natural Variations, Archean to Present. 1985;Vol 32:487–492.
- D’Hondt S, Donaghay P, Zachos JC, Luttenberg D, Lindinger M. Organic carbon fluxes and ecological recovery from the Cretaceous-Tertiary mass extinction. Science. 1998;282:276–279. - PubMed
Publication types
MeSH terms
Substances
Related information
LinkOut - more resources
Full Text Sources