Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Elsevier Science full text link Elsevier Science
Full text links

Actions

.2012 Mar;81(3):488-97.
doi: 10.1124/mol.111.075226. Epub 2011 Dec 21.

Characterization of the substituted N-triazole oxindole TROX-1, a small-molecule, state-dependent inhibitor of Ca(V)2 calcium channels

Affiliations

Characterization of the substituted N-triazole oxindole TROX-1, a small-molecule, state-dependent inhibitor of Ca(V)2 calcium channels

Andrew M Swensen et al. Mol Pharmacol.2012 Mar.

Abstract

Biological, genetic, and clinical evidence provide validation for N-type calcium channels (Ca(V)2.2) as therapeutic targets for chronic pain. A state-dependent Ca(V)2.2 inhibitor may provide an improved therapeutic window over ziconotide, the peptidyl Ca(V)2.2 inhibitor used clinically. Supporting this notion, we recently reported that in preclinical models, the state-dependent Ca(V)2 inhibitor (3R)-5-(3-chloro-4-fluorophenyl)-3-methyl-3-(pyrimidin-5-ylmethyl)-1-(1H-1,2,4-triazol-3-yl)-1,3-dihydro-2H-indol-2-one (TROX-1) has an improved therapeutic window compared with ziconotide. Here we characterize TROX-1 inhibition of Cav2.2 channels in more detail. When channels are biased toward open/inactivated states by depolarizing the membrane potential under voltage-clamp electrophysiology, TROX-1 inhibits Ca(V)2.2 channels with an IC(50) of 0.11 μM. The voltage dependence of Ca(V)2.2 inhibition was examined using automated electrophysiology. TROX-1 IC(50) values were 4.2, 0.90, and 0.36 μM at -110, -90, and -70 mV, respectively. TROX-1 displayed use-dependent inhibition of Ca(V)2.2 with a 10-fold IC(50) separation between first (27 μM) and last (2.7 μM) pulses in a train. In a fluorescence-based calcium influx assay, TROX-1 inhibited Ca(V)2.2 channels with an IC(50) of 9.5 μM under hyperpolarized conditions and 0.69 μM under depolarized conditions. Finally, TROX-1 potency was examined across the Ca(V)2 subfamily. Depolarized IC(50) values were 0.29, 0.19, and 0.28 μM by manual electrophysiology using matched conditions and 1.8, 0.69, and 1.1 μM by calcium influx for Ca(V)2.1, Ca(V)2.2, and Ca(V)2.3, respectively. Together, these in vitro data support the idea that a state-dependent, non-subtype-selective Ca(V)2 channel inhibitor can achieve an improved therapeutic window over the relatively state-independent Ca(V)2.2-selective inhibitor ziconotide in preclinical models of chronic pain.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources

Full text links
Elsevier Science full text link Elsevier Science
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2026 Movatter.jp