Proteomic analysis of a pleistocene mammoth femur reveals more than one hundred ancient bone proteins
- PMID:22103443
- DOI: 10.1021/pr200721u
Proteomic analysis of a pleistocene mammoth femur reveals more than one hundred ancient bone proteins
Abstract
We used high-sensitivity, high-resolution tandem mass spectrometry to shotgun sequence ancient protein remains extracted from a 43 000 year old woolly mammoth ( Mammuthus primigenius ) bone preserved in the Siberian permafrost. For the first time, 126 unique protein accessions, mostly low-abundance extracellular matrix and plasma proteins, were confidently identified by solid molecular evidence. Among the best characterized was the carrier protein serum albumin, presenting two single amino acid substitutions compared to extant African ( Loxodonta africana ) and Indian ( Elephas maximus ) elephants. Strong evidence was observed of amino acid modifications due to post-mortem hydrolytic and oxidative damage. A consistent subset of this permafrost bone proteome was also identified in more recent Columbian mammoth ( Mammuthus columbi ) samples from temperate latitudes, extending the potential of the approach described beyond subpolar environments. Mass spectrometry-based ancient protein sequencing offers new perspectives for future molecular phylogenetic inference and physiological studies on samples not amenable to ancient DNA investigation. This approach therefore represents a further step into the ongoing integration of different high-throughput technologies for identification of ancient biomolecules, unleashing the field of paleoproteomics.
Similar articles
- Complete mitochondrial genome and phylogeny of Pleistocene mammoth Mammuthus primigenius.Rogaev EI, Moliaka YK, Malyarchuk BA, Kondrashov FA, Derenko MV, Chumakov I, Grigorenko AP.Rogaev EI, et al.PLoS Biol. 2006 Mar;4(3):e73. doi: 10.1371/journal.pbio.0040073. Epub 2006 Feb 7.PLoS Biol. 2006.PMID:16448217Free PMC article.
- The mummified brain of a pleistocene woolly mammoth (Mammuthus primigenius) compared with the brain of the extant African elephant (Loxodonta africana).Kharlamova AS, Saveliev SV, Protopopov AV, Maseko BC, Bhagwandin A, Manger PR.Kharlamova AS, et al.J Comp Neurol. 2015 Nov 1;523(16):2326-43. doi: 10.1002/cne.23817. Epub 2015 Jun 11.J Comp Neurol. 2015.PMID:26011110
- Complete Columbian mammoth mitogenome suggests interbreeding with woolly mammoths.Enk J, Devault A, Debruyne R, King CE, Treangen T, O'Rourke D, Salzberg SL, Fisher D, MacPhee R, Poinar H.Enk J, et al.Genome Biol. 2011;12(5):R51. doi: 10.1186/gb-2011-12-5-r51. Epub 2011 May 31.Genome Biol. 2011.PMID:21627792Free PMC article.
- Elephant natural history: a genomic perspective.Roca AL, Ishida Y, Brandt AL, Benjamin NR, Zhao K, Georgiadis NJ.Roca AL, et al.Annu Rev Anim Biosci. 2015;3:139-67. doi: 10.1146/annurev-animal-022114-110838. Epub 2014 Dec 8.Annu Rev Anim Biosci. 2015.PMID:25493538Review.
- Applications of diagonal chromatography for proteome-wide characterization of protein modifications and activity-based analyses.Gevaert K, Impens F, Van Damme P, Ghesquière B, Hanoulle X, Vandekerckhove J.Gevaert K, et al.FEBS J. 2007 Dec;274(24):6277-89. doi: 10.1111/j.1742-4658.2007.06149.x. Epub 2007 Nov 16.FEBS J. 2007.PMID:18021238Review.
Cited by
- SPIN enables high throughput species identification of archaeological bone by proteomics.Rüther PL, Husic IM, Bangsgaard P, Gregersen KM, Pantmann P, Carvalho M, Godinho RM, Friedl L, Cascalheira J, Taurozzi AJ, Jørkov MLS, Benedetti MM, Haws J, Bicho N, Welker F, Cappellini E, Olsen JV.Rüther PL, et al.Nat Commun. 2022 May 5;13(1):2458. doi: 10.1038/s41467-022-30097-x.Nat Commun. 2022.PMID:35513387Free PMC article.
- Palaeoproteomic identification of breast milk protein residues from the archaeological skeletal remains of a neonatal dog.Tsutaya T, Mackie M, Koenig C, Sato T, Weber AW, Kato H, Olsen JV, Cappellini E.Tsutaya T, et al.Sci Rep. 2019 Sep 6;9(1):12841. doi: 10.1038/s41598-019-49183-0.Sci Rep. 2019.PMID:31492911Free PMC article.
- Leveraging palaeoproteomics to address conservation and restoration agendas.Peters C, Richter KK, Svenning JC, Boivin N.Peters C, et al.iScience. 2022 Apr 4;25(5):104195. doi: 10.1016/j.isci.2022.104195. eCollection 2022 May 20.iScience. 2022.PMID:35479402Free PMC article.Review.
- Comparing extraction method efficiency for high-throughput palaeoproteomic bone species identification.Mylopotamitaki D, Harking FS, Taurozzi AJ, Fagernäs Z, Godinho RM, Smith GM, Weiss M, Schüler T, McPherron SP, Meller H, Cascalheira J, Bicho N, Olsen JV, Hublin JJ, Welker F.Mylopotamitaki D, et al.Sci Rep. 2023 Oct 26;13(1):18345. doi: 10.1038/s41598-023-44885-y.Sci Rep. 2023.PMID:37884544Free PMC article.
- Mitochondrial DNA analysis of ancient sheep from Kazakhstan: evidence for early sheep introduction.Tarlykov P, Atavliyeva S, Auganova D, Akhmetollayev I, Loshakova T, Varfolomeev V, Ramankulov Y.Tarlykov P, et al.Heliyon. 2021 Sep 16;7(9):e08011. doi: 10.1016/j.heliyon.2021.e08011. eCollection 2021 Sep.Heliyon. 2021.PMID:34585018Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources