Evolution of spur-length diversity in Aquilegia petals is achieved solely through cell-shape anisotropy
- PMID:22090381
- PMCID: PMC3282339
- DOI: 10.1098/rspb.2011.1873
Evolution of spur-length diversity in Aquilegia petals is achieved solely through cell-shape anisotropy
Abstract
The role of petal spurs and specialized pollinator interactions has been studied since Darwin. Aquilegia petal spurs exhibit striking size and shape diversity, correlated with specialized pollinators ranging from bees to hawkmoths in a textbook example of adaptive radiation. Despite the evolutionary significance of spur length, remarkably little is known about Aquilegia spur morphogenesis and its evolution. Using experimental measurements, both at tissue and cellular levels, combined with numerical modelling, we have investigated the relative roles of cell divisions and cell shape in determining the morphology of the Aquilegia petal spur. Contrary to decades-old hypotheses implicating a discrete meristematic zone as the driver of spur growth, we find that Aquilegia petal spurs develop via anisotropic cell expansion. Furthermore, changes in cell anisotropy account for 99 per cent of the spur-length variation in the genus, suggesting that the true evolutionary innovation underlying the rapid radiation of Aquilegia was the mechanism of tuning cell shape.
Figures





Similar articles
- Brassinosteroids regulate petal spur length in Aquilegia by controlling cell elongation.Conway SJ, Walcher-Chevillet CL, Salome Barbour K, Kramer EM.Conway SJ, et al.Ann Bot. 2021 Nov 9;128(7):931-942. doi: 10.1093/aob/mcab116.Ann Bot. 2021.PMID:34508638Free PMC article.
- Comparative transcriptomics of early petal development across four diverse species of Aquilegia reveal few genes consistently associated with nectar spur development.Ballerini ES, Kramer EM, Hodges SA.Ballerini ES, et al.BMC Genomics. 2019 Aug 22;20(1):668. doi: 10.1186/s12864-019-6002-9.BMC Genomics. 2019.PMID:31438840Free PMC article.
- Molecular basis for three-dimensional elaboration of the Aquilegia petal spur.Yant L, Collani S, Puzey J, Levy C, Kramer EM.Yant L, et al.Proc Biol Sci. 2015 Mar 22;282(1803):20142778. doi: 10.1098/rspb.2014.2778.Proc Biol Sci. 2015.PMID:25673682Free PMC article.
- Aquilegia as a model system for the evolution and ecology of petals.Kramer EM, Hodges SA.Kramer EM, et al.Philos Trans R Soc Lond B Biol Sci. 2010 Feb 12;365(1539):477-90. doi: 10.1098/rstb.2009.0230.Philos Trans R Soc Lond B Biol Sci. 2010.PMID:20047874Free PMC article.Review.
- Understanding the development and evolution of novel floral form in Aquilegia.Sharma B, Yant L, Hodges SA, Kramer EM.Sharma B, et al.Curr Opin Plant Biol. 2014 Feb;17:22-7. doi: 10.1016/j.pbi.2013.10.006. Epub 2013 Nov 15.Curr Opin Plant Biol. 2014.PMID:24507490Review.
Cited by
- Cell number explains the intraspecific spur-length variation in anAquilegia species.Zhou ZL, Duan YW, Luo Y, Yang YP, Zhang ZQ.Zhou ZL, et al.Plant Divers. 2019 Jun 15;41(5):307-314. doi: 10.1016/j.pld.2019.06.001. eCollection 2019 Oct.Plant Divers. 2019.PMID:31934675Free PMC article.
- The relationship between cell division and elongation during development of the nectar-yielding petal spur in Centranthus ruber (Valerianaceae).Mack JL, Davis AR.Mack JL, et al.Ann Bot. 2015 Mar;115(4):641-9. doi: 10.1093/aob/mcu261.Ann Bot. 2015.PMID:25725007Free PMC article.
- A flat petal as ancestral state for Ranunculaceae.Delpeuch P, Jabbour F, Damerval C, Schönenberger J, Pamperl S, Rome M, Nadot S.Delpeuch P, et al.Front Plant Sci. 2022 Sep 21;13:961906. doi: 10.3389/fpls.2022.961906. eCollection 2022.Front Plant Sci. 2022.PMID:36212342Free PMC article.
- POPOVICH, encoding a C2H2 zinc-finger transcription factor, plays a central role in the development of a key innovation, floral nectar spurs, inAquilegia.Ballerini ES, Min Y, Edwards MB, Kramer EM, Hodges SA.Ballerini ES, et al.Proc Natl Acad Sci U S A. 2020 Sep 8;117(36):22552-22560. doi: 10.1073/pnas.2006912117. Epub 2020 Aug 26.Proc Natl Acad Sci U S A. 2020.PMID:32848061Free PMC article.
- De novo transcriptome sequencing of Impatiens uliginosa and the analysis of candidate genes related to spur development.Li Y, Wei CM, Li XY, Meng DC, Gu ZJ, Qu SP, Huang MJ, Huang HQ.Li Y, et al.BMC Plant Biol. 2022 Dec 1;22(1):553. doi: 10.1186/s12870-022-03894-1.BMC Plant Biol. 2022.PMID:36456926Free PMC article.
References
- Hodges S. A., Arnold M. L. 1995. Spurring plant diversification: are floral nectar spurs a key innovation? Phil. Trans. R. Soc. Lond. B 262, 343–34810.1098/rspb.1995.0215 (doi:10.1098/rspb.1995.0215). - DOI - DOI
- Whittall J. B., Hodges S. A. 2007. Pollinator shifts drive increasingly long nectar spurs in columbine flowers. Nature 447, 706.10.1038/Nature05857 (doi:10.1038/Nature05857) - DOI - DOI - PubMed
- Fulton M., Hodges S. A. 1999. Floral isolation between Aquilegia formosa and Aquilegia pubescens. Proc. R. Soc. Lond. B 266, 2247–225210.1098/rspb.1999.0915 (doi:10.1098/rspb.1999.0915) - DOI - DOI
- Darwin C. 1885. The various contrivances by which orchids are fertilized by insects, 2nd edn London, UK: John Murray - PubMed
- Tepfer S. S. 1953. Floral anatomy and ontogeny in Aquilegia formosa var. truncata, and Ranunculus repens. Univ. Cal. Pub. Bot. 25, 513–648
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources