Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Elsevier Science full text link Elsevier Science
Full text links

Actions

Share

.2012 Jan;62(1):375-96.
doi: 10.1016/j.ympev.2011.10.009. Epub 2011 Oct 21.

Phylogeny and historical biogeography of ancient assassin spiders (Araneae: Archaeidae) in the Australian mesic zone: evidence for Miocene speciation within Tertiary refugia

Affiliations

Phylogeny and historical biogeography of ancient assassin spiders (Araneae: Archaeidae) in the Australian mesic zone: evidence for Miocene speciation within Tertiary refugia

Michael G Rix et al. Mol Phylogenet Evol.2012 Jan.

Abstract

The rainforests, wet sclerophyll forests and temperate heathlands of the Australian mesic zone are home to a diverse and highly endemic biota, including numerous old endemic lineages restricted to refugial, mesic biomes. A growing number of phylogeographic studies have attempted to explain the origins and diversification of the Australian mesic zone biota, in order to test and better understand the mode and tempo of historical speciation within Australia. Assassin spiders (family Archaeidae) are a lineage of iconic araneomorph spiders, characterised by their antiquity, remarkable morphology and relictual biogeography on the southern continents. The Australian assassin spider fauna is characterised by a high diversity of allopatric species, many of which are restricted to individual mountains or montane systems, and all of which are closely tied to mesic and/or refugial habitats in the east and extreme south-west of mainland Australia. We tested the phylogeny and vicariant biogeography of the Australian Archaeidae (genus Austrarchaea Forster & Platnick), using a multi-locus molecular approach. Fragments from six mitochondrial genes (COI, COII, tRNA-K, tRNA-D, ATP8, ATP6) and one nuclear protein-coding gene (Histone H3) were used to infer phylogenetic relationships and to explore the phylogeographic origins of the diverse Australian fauna. Bayesian analyses of the complete molecular dataset, along with differentially-partitioned Bayesian and parsimony analyses of a smaller concatenated dataset, revealed the presence of three major Australian lineages, each with non-overlapping distributions in north-eastern Queensland, mid-eastern Australia and southern Australia, respectively. Divergence date estimation using mitochondrial data and a rate-calibrated relaxed molecular clock revealed that major lineages diverged in the early Tertiary period, prior to the final rifting of Australia from East Antarctica. Subsequent speciation occurred during the Miocene (23-5.3 million years ago), with tropical and subtropical taxa diverging in the early-mid Miocene, prior to southern and temperate taxa in the mid-late Miocene. Area cladograms reconciled with Bayesian chronograms for all known Archaeidae in southern and south-eastern Australia revealed seven potentially vicariant biogeographic barriers in eastern Queensland, New South Wales and southern Australia, each proposed and discussed in relation to other mesic zone taxa. Five of these barriers were inferred as being of early Miocene age, and implicated in the initial vicariant separation of endemic regional clades. Phylogeographic results for Australian Archaeidae are congruent with a model of sequential allopatric speciation in Tertiary refugia, as driven by the contraction and fragmentation of Australia's mesic biomes during the Miocene. Assassin spiders clearly offer great potential for further testing historical biogeographic processes in temperate and eastern Australia, and are a useful group for better understanding the biology and biogeography of the Australian mesic zone.

Copyright © 2011 Elsevier Inc. All rights reserved.

PubMed Disclaimer

Similar articles

See all similar articles

Cited by

See all "Cited by" articles

Publication types

MeSH terms

Substances

Related information

LinkOut - more resources

Full text links
Elsevier Science full text link Elsevier Science
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp