Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Springer full text link Springer
Full text links

Actions

Share

.2011 Nov;346(2):209-22.
doi: 10.1007/s00441-011-1255-x. Epub 2011 Oct 11.

Structural messenger RNA contains cytokeratin polymerization and depolymerization signals

Affiliations

Structural messenger RNA contains cytokeratin polymerization and depolymerization signals

Malgorzata Kloc et al. Cell Tissue Res.2011 Nov.

Abstract

We have previously shown that VegT mRNA plays a structural (translation-independent) role in the organization of the cytokeratin cytoskeleton in Xenopus oocytes. The depletion of VegT mRNA causes the fragmentation of the cytokeratin network in the vegetal cortex of Xenopus oocytes. This effect can be rescued by the injection of synthetic VegT RNA into the oocyte. Here, we show that the structural function of VegT mRNA in Xenopus oocyte depends on its combinatory signals for the induction or facilitation and for the maintenance of the depolymerization vs. polymerization status of cytokeratin filaments and that the 300-nucleotide fragment of VegT RNA isolated from the context of the entire molecule induces and maintains the depolymerization of cytokeratin filaments when injected into Xenopus oocytes. A computational analysis of three homologous Xenopus VegT mRNAs has revealed the presence, within this 300-nucleotide region, of a conserved base-pairing (hairpin) configuration that might function in RNA/protein interactions.

PubMed Disclaimer

Similar articles

See all similar articles

Cited by

Publication types

MeSH terms

Substances

Related information

Grants and funding

LinkOut - more resources

Full text links
Springer full text link Springer
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp