Catalytic turnover of [FeFe]-hydrogenase based on single-molecule imaging
- PMID:21916466
- DOI: 10.1021/ja207461t
Catalytic turnover of [FeFe]-hydrogenase based on single-molecule imaging
Abstract
Hydrogenases catalyze the interconversion of protons and hydrogen according to the reversible reaction: 2H(+) + 2e(-) ⇆ H(2) while using only the earth-abundant metals nickel and/or iron for catalysis. Due to their high activity for proton reduction and the technological significance of the H(+)/H(2) half reaction, it is important to characterize the catalytic activity of [FeFe]-hydrogenases using both biochemical and electrochemical techniques. Following a detailed electrochemical and photoelectrochemical study of an [FeFe]-hydrogenase from Clostridium acetobutylicum (CaHydA), we now report electrochemical and single-molecule imaging studies carried out on a catalytically active hydrogenase preparation. The enzyme CaHydA, a homologue (70% identity) of the [FeFe]-hydrogenase from Clostridium pasteurianum , CpI, was adsorbed to a negatively charged, self-assembled monolayer (SAM) for investigation by electrochemical scanning tunneling microscopy (EC-STM) techniques and macroscopic electrochemical measurements. The EC-STM imaging revealed uniform surface coverage with sufficient stability to undergo repeated scanning with a STM tip as well as other electrochemical investigations. Cyclic voltammetry yielded a characteristic cathodic hydrogen production signal when the potential was scanned sufficiently negative. The direct observation of the single enzyme distribution on the Au-SAM surface coupled with macroscopic electrochemical measurements obtained from the same electrode allowed the evaluation of a turnover frequency (TOF) as a function of potential for single [FeFe]-hydrogenase molecules.
© 2011 American Chemical Society
Similar articles
- Covalent attachment of FeFe hydrogenases to carbon electrodes for direct electron transfer.Baffert C, Sybirna K, Ezanno P, Lautier T, Hajj V, Meynial-Salles I, Soucaille P, Bottin H, Léger C.Baffert C, et al.Anal Chem. 2012 Sep 18;84(18):7999-8005. doi: 10.1021/ac301812s. Epub 2012 Aug 30.Anal Chem. 2012.PMID:22891965
- [FeFe]-hydrogenase-catalyzed H2 production in a photoelectrochemical biofuel cell.Hambourger M, Gervaldo M, Svedruzic D, King PW, Gust D, Ghirardi M, Moore AL, Moore TA.Hambourger M, et al.J Am Chem Soc. 2008 Feb 13;130(6):2015-22. doi: 10.1021/ja077691k. Epub 2008 Jan 19.J Am Chem Soc. 2008.PMID:18205358
- Identification and characterization of the "super-reduced" state of the H-cluster in [FeFe] hydrogenase: a new building block for the catalytic cycle?Adamska A, Silakov A, Lambertz C, Rüdiger O, Happe T, Reijerse E, Lubitz W.Adamska A, et al.Angew Chem Int Ed Engl. 2012 Nov 12;51(46):11458-62. doi: 10.1002/anie.201204800. Epub 2012 Oct 26.Angew Chem Int Ed Engl. 2012.PMID:23109267No abstract available.
- Hydrogenases and H(+)-reduction in primary energy conservation.Vignais PM.Vignais PM.Results Probl Cell Differ. 2008;45:223-52. doi: 10.1007/400_2006_027.Results Probl Cell Differ. 2008.PMID:18500479Review.
- Approaches to efficient molecular catalyst systems for photochemical H2 production using [FeFe]-hydrogenase active site mimics.Wang M, Chen L, Li X, Sun L.Wang M, et al.Dalton Trans. 2011 Dec 28;40(48):12793-800. doi: 10.1039/c1dt11166c. Epub 2011 Oct 10.Dalton Trans. 2011.PMID:21983599Review.
Cited by
- Spectroscopic investigations under whole-cell conditions provide new insight into the metal hydride chemistry of [FeFe]-hydrogenase.Mészáros LS, Ceccaldi P, Lorenzi M, Redman HJ, Pfitzner E, Heberle J, Senger M, Stripp ST, Berggren G.Mészáros LS, et al.Chem Sci. 2020 Apr 14;11(18):4608-4617. doi: 10.1039/d0sc00512f.Chem Sci. 2020.PMID:34122916Free PMC article.
- Outer-coordination sphere in multi-H+/multi-e-molecular electrocatalysis.Sinha S, Williams CK, Jiang JJ.Sinha S, et al.iScience. 2021 Dec 15;25(1):103628. doi: 10.1016/j.isci.2021.103628. eCollection 2022 Jan 21.iScience. 2021.PMID:35005563Free PMC article.Review.
- A 13-million turnover-number anionic Ir-catalyst for a selective industrial route to chiral nicotine.Yin C, Jiang YF, Huang F, Xu CQ, Pan Y, Gao S, Chen GQ, Ding X, Bai ST, Lang Q, Li J, Zhang X.Yin C, et al.Nat Commun. 2023 Jun 22;14(1):3718. doi: 10.1038/s41467-023-39375-8.Nat Commun. 2023.PMID:37349291Free PMC article.
- Covalent immobilization of oriented photosystem II on a nanostructured electrode for solar water oxidation.Kato M, Cardona T, Rutherford AW, Reisner E.Kato M, et al.J Am Chem Soc. 2013 Jul 24;135(29):10610-3. doi: 10.1021/ja404699h. Epub 2013 Jul 11.J Am Chem Soc. 2013.PMID:23829513Free PMC article.
- Lewis acid protection turns cyanide containing [FeFe]-hydrogenase mimics into proton reduction catalysts.Redman HJ, Huang P, Haumann M, Cheah MH, Berggren G.Redman HJ, et al.Dalton Trans. 2022 Mar 22;51(12):4634-4643. doi: 10.1039/d1dt03896f.Dalton Trans. 2022.PMID:35212328Free PMC article.
Publication types
MeSH terms
Substances
Related information
LinkOut - more resources
Full Text Sources