Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Elsevier Science full text link Elsevier Science
Full text links

Actions

Share

Review
.2012 Jan-Feb;30(1):261-71.
doi: 10.1016/j.biotechadv.2011.06.016. Epub 2011 Jul 5.

Targeting reactive astrogliosis by novel biotechnological strategies

Affiliations
Review

Targeting reactive astrogliosis by novel biotechnological strategies

Anna Maria Colangelo et al. Biotechnol Adv.2012 Jan-Feb.

Abstract

Neuroglial cells are fundamental for control of brain homeostasis and synaptic plasticity. Decades of pathological and physiological studies have focused on neurons in neurodegenerative disorders, but it is becoming increasingly evident that glial cells play an irreplaceable part in brain homeostasis and synaptic plasticity. Animal models of brain injury and neurodegenerative diseases have largely contributed to current understanding of astrocyte-specific mechanisms participating in brain function and neurodegeneration. Specifically, gliotransmission (presence of glial neurotransmitters, and their receptors and active transporters), trophic support (release, maturation and degradation of neurotrophins) and metabolism (production of lactate and GSH components) are relevant aspects of astrocyte function in neuronal metabolism, synaptic plasticity and neuroprotection. Morpho-functional changes of astrocytes and microglial cells after traumatic or toxic insults to the central nervous system (namely, reactive gliosis) disrupt the complex neuro-glial networks underlying homeostasis and connectivity within brain circuits. Thus, neurodegenerative diseases might be primarily regarded as gliodegenerative processes, in which profound alterations of glial activation have a clear impact on progression and outcomes of neuropathological processes. This review provides an overview of current knowledge of astrocyte functions in the brain and how targeting glial-specific pathways might ultimately impact the development of therapies for clinical management of neurodegenerative disorders.

Copyright © 2011 Elsevier Inc. All rights reserved.

PubMed Disclaimer

Similar articles

See all similar articles

Cited by

See all "Cited by" articles

Publication types

MeSH terms

Substances

Related information

LinkOut - more resources

Full text links
Elsevier Science full text link Elsevier Science
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp