Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Medknow Publications and Media Pvt Ltd full text link Medknow Publications and Media Pvt Ltd Free PMC article
Full text links

Actions

Share

.2011 May;17 Suppl 1(Suppl 1):S32-40.
doi: 10.4103/0971-6866.80357.

Pharmacogenomic association study on the role of drug metabolizing, drug transporters and drug target gene polymorphisms in drug-resistant epilepsy in a north Indian population

Affiliations

Pharmacogenomic association study on the role of drug metabolizing, drug transporters and drug target gene polymorphisms in drug-resistant epilepsy in a north Indian population

Ritu Kumari et al. Indian J Hum Genet.2011 May.

Abstract

Background: In epilepsy, in spite of the best possible medications and treatment protocols, approximately one-third of the patients do not respond adequately to anti-epileptic drugs. Such interindividual variations in drug response are believed to result from genetic variations in candidate genes belonging to multiple pathways.

Materials and methods: In the present pharmacogenetic analysis, a total of 402 epilepsy patients were enrolled. Of them, 128 were diagnosed as multiple drug-resistant epilepsy and 274 patients were diagnosed as having drug-responsive epilepsy. We selected a total of 10 candidate gene polymorphisms belonging to three major classes, namely drug transporters, drug metabolizers and drug targets. These genetic polymorphism included CYP2C9 c.430C>T (*2 variant), CYP2C9 c.1075 A>C (*3 variant), ABCB1 c.3435C>T, ABCB1c.1236C>T, ABCB1c.2677G>T/A, SCN1A c.3184 A> G, SCN2A c.56G>A (p.R19K), GABRA1c.IVS11 + 15 A>G and GABRG2 c.588C>T. Genotyping was performed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) methods, and each genotype was confirmed via direct DNA sequencing. The relationship between various genetic polymorphisms and responsiveness was examined using binary logistic regression by SPSS statistical analysis software.

Results: CYP2C9 c.1075 A>C polymorphism showed a marginal significant difference between drug resistance and drug-responsive patients for the AC genotype (Odds ratio [OR] = 0.57, 95% confidence interval [CI] = 0.32-1.00; P = 0.05). In drug transporter, ABCB1c.2677G>T/A polymorphism, allele A was associated with drug-resistant phenotype in epilepsy patients (P = 0.03, OR = 0.31, 95% CI = 0.10-0.93). Similarly, the variant allele frequency of SCN2A c.56 G>A single nucleotide polymorphism was significantly higher in drug-resistant patients (P = 0.03; OR = 1.62, 95% CI = 1.03, 2.56). We also observed a significant difference at the genotype as well as allele frequencies of GABRA1c.IVS11 + 15 A > G polymorphism in drug-resistant patients for homozygous GG genotype (P = 0.03, OR = 1.84, 95% CI = 1.05-3.23) and G allele (P = 0.02, OR = 1.43, 95% CI = 1.05-1.95).

Conclusions: Our results showed that pharmacogenetic variants have important roles in epilepsy at different levels. It may be noted that multi-factorial diseases like epilepsy are also regulated by various other factors that may also be considered in the future.

Keywords: Drug resistance; epilepsy; pharmacogenomics.

PubMed Disclaimer

Conflict of interest statement

Conflict of Interest: None declared.

Similar articles

See all similar articles

Cited by

See all "Cited by" articles

References

    1. Szoeke CE, Newton M, Wood JM, Goldstein D, Berkovic SF, OBrien TJ, et al. Update on pharmacogenetics in epilepsy: A brief review. Lancet Neurol. 2006;5:189–96. - PubMed
    1. Mann MW, Pons G. Drug resistance in partial epilepsy: Epidemiology, mechanisms, pharmacogenetics and therapeutical aspects. Neurochirurgie. 2008;54:259–64. - PubMed
    1. Wilson JF, Weale ME, Smith AC, Gratrix F, Fletcher B, et al. Population genetic structure of variable drug response. Nat Genet. 2001;29:265–9. - PubMed
    1. Jimenez-Sanchez G. Developing a platform for genomic medicine in Mexico. Science. 2003;300:295–6. - PubMed
    1. Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, et al. Detection of large-scale variation in the human genome. Nat Genet. 2004;36:949–51. - PubMed

Related information

LinkOut - more resources

Full text links
Medknow Publications and Media Pvt Ltd full text link Medknow Publications and Media Pvt Ltd Free PMC article
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp