Nanofluid optical property characterization: towards efficient direct absorption solar collectors
- PMID:21711750
- PMCID: PMC3211283
- DOI: 10.1186/1556-276X-6-225
Nanofluid optical property characterization: towards efficient direct absorption solar collectors
Abstract
Suspensions of nanoparticles (i.e., particles with diameters < 100 nm) in liquids, termed nanofluids, show remarkable thermal and optical property changes from the base liquid at low particle loadings. Recent studies also indicate that selected nanofluids may improve the efficiency of direct absorption solar thermal collectors. To determine the effectiveness of nanofluids in solar applications, their ability to convert light energy to thermal energy must be known. That is, their absorption of the solar spectrum must be established. Accordingly, this study compares model predictions to spectroscopic measurements of extinction coefficients over wavelengths that are important for solar energy (0.25 to 2.5 μm). A simple addition of the base fluid and nanoparticle extinction coefficients is applied as an approximation of the effective nanofluid extinction coefficient. Comparisons with measured extinction coefficients reveal that the approximation works well with water-based nanofluids containing graphite nanoparticles but less well with metallic nanoparticles and/or oil-based fluids. For the materials used in this study, over 95% of incoming sunlight can be absorbed (in a nanofluid thickness ≥10 cm) with extremely low nanoparticle volume fractions - less than 1 × 10-5, or 10 parts per million. Thus, nanofluids could be used to absorb sunlight with a negligible amount of viscosity and/or density (read: pumping power) increase.
Figures








Similar articles
- Application of Few-Layered Reduced Graphene Oxide Nanofluid as a Working Fluid for Direct Absorption Solar Collectors.Shende RC, Ramaprabhu S.Shende RC, et al.J Nanosci Nanotechnol. 2017 Feb;17(2):1233-239. doi: 10.1166/jnn.2017.12695.J Nanosci Nanotechnol. 2017.PMID:29683297
- Optical Properties of Mixed Nanofluids Containing Carbon Nanohorns and Silver Nanoparticles for Solar Energy Applications.Sani E, Di Ninni P, Colla L, Barison S, Agresti F.Sani E, et al.J Nanosci Nanotechnol. 2015 May;15(5):3568-73.J Nanosci Nanotechnol. 2015.PMID:26504978
- Nanofluids for Direct-Absorption Solar Collectors-DASCs: A Review on Recent Progress and Future Perspectives.Moghaieb HS, Amendola V, Khalil S, Chakrabarti S, Maguire P, Mariotti D.Moghaieb HS, et al.Nanomaterials (Basel). 2023 Mar 30;13(7):1232. doi: 10.3390/nano13071232.Nanomaterials (Basel). 2023.PMID:37049324Free PMC article.Review.
- Exploring the photo-thermal conversion behavior and extinction coefficient of activated carbon nanofluids for direct absorption solar collector applications.Kumar PG, Vigneswaran S, Meikandan M, Sakthivadivel D, Salman M, Thakur AK, Sathyamurthy R, Kim SC.Kumar PG, et al.Environ Sci Pollut Res Int. 2022 Feb;29(9):13188-13200. doi: 10.1007/s11356-021-16637-w. Epub 2021 Sep 28.Environ Sci Pollut Res Int. 2022.PMID:34585351
- Recent progress on flat plate solar collectors equipped with nanofluid and turbulator: state of the art.Zaboli M, Saedodin S, Ajarostaghi SSM, Karimi N.Zaboli M, et al.Environ Sci Pollut Res Int. 2023 Nov;30(51):109921-109954. doi: 10.1007/s11356-023-29815-9. Epub 2023 Oct 4.Environ Sci Pollut Res Int. 2023.PMID:37792196Free PMC article.Review.
Cited by
- Optical Properties of Plasma Dimer Nanoparticles for Solar Energy Absorption.Sun C, Qin C, Zhai H, Zhang B, Wu X.Sun C, et al.Nanomaterials (Basel). 2021 Oct 15;11(10):2722. doi: 10.3390/nano11102722.Nanomaterials (Basel). 2021.PMID:34685162Free PMC article.
- Carbon Nanomaterial-Based Nanofluids for Direct Thermal Solar Absorption.Trong Tam N, Viet Phuong N, Hong Khoi P, Ngoc Minh P, Afrand M, Van Trinh P, Hung Thang B, Żyła G, Estellé P.Trong Tam N, et al.Nanomaterials (Basel). 2020 Jun 19;10(6):1199. doi: 10.3390/nano10061199.Nanomaterials (Basel). 2020.PMID:32575460Free PMC article.Review.
- Hybrid Nanofluids as Renewable and Sustainable Colloidal Suspensions for Potential Photovoltaic/Thermal and Solar Energy Applications.Rasheed T, Hussain T, Anwar MT, Ali J, Rizwan K, Bilal M, Alshammari FH, Alwadai N, Almuslem AS.Rasheed T, et al.Front Chem. 2021 Sep 27;9:737033. doi: 10.3389/fchem.2021.737033. eCollection 2021.Front Chem. 2021.PMID:34646812Free PMC article.Review.
- Synthesis, characterisation and thermo-physical properties of highly stable graphene oxide-based aqueous nanofluids for potential low-temperature direct absorption solar applications.Cham Sa-Ard W, Fawcett D, Fung CC, Chapman P, Rattan S, Poinern GEJ.Cham Sa-Ard W, et al.Sci Rep. 2021 Aug 16;11(1):16549. doi: 10.1038/s41598-021-94406-y.Sci Rep. 2021.PMID:34400658Free PMC article.
- Photothermal response of CVD synthesized carbon (nano)spheres/aqueous nanofluids for potential application in direct solar absorption collectors: a preliminary investigation.Poinern GE, Brundavanam S, Shah M, Laava I, Fawcett D.Poinern GE, et al.Nanotechnol Sci Appl. 2012 Jul 30;5:49-59. doi: 10.2147/NSA.S34166. eCollection 2012.Nanotechnol Sci Appl. 2012.PMID:24198496Free PMC article.
References
- Choi S, Siginer DA, Wang HP. Enhancing thermal conductivity of fluids with nanoparticles. Developments and applications of non-Newtonian flows. ASME. 1995;231(MD 66):99–105.
- Taylor RA, Phelan PE, Otanicar T, Adrian RJ, Prasher RS. Vapor generation in a nanoparticle liquid suspension using a focused, continuous laser. Appl Phys Lett. p. 161907. - DOI
- Otanicar T, Taylor RA, Phelan PE, Prasher R. Impact of size and scattering mode on the optimal solar absorbing nanofluid. San Francisco: ASME ES; 2009. p. 90066.
Related information
LinkOut - more resources
Full Text Sources
Other Literature Sources