Radiosynthesis and in vivo evaluation of a series of substituted 11C-phenethylamines as 5-HT (2A) agonist PET tracers
- PMID:21174090
- DOI: 10.1007/s00259-010-1686-8
Radiosynthesis and in vivo evaluation of a series of substituted 11C-phenethylamines as 5-HT (2A) agonist PET tracers
Abstract
Purpose: Positron emission tomography (PET) imaging of serotonin 2A (5-HT(2A)) receptors with agonist tracers holds promise for the selective labelling of 5-HT(2A) receptors in their high-affinity state. We have previously validated [(11)C]Cimbi-5 and found that it is a 5-HT(2A) receptor agonist PET tracer. In an attempt to further optimize the target-to-background binding ratio, we modified the chemical structure of the phenethylamine backbone and carbon-11 labelling site of [(11)C]Cimbi-5 in different ways. Here, we present the in vivo validation of nine novel 5-HT(2A) receptor agonist PET tracers in the pig brain.
Methods: Each radiotracer was injected intravenously into anaesthetized Danish Landrace pigs, and the pigs were subsequently scanned for 90 min in a high-resolution research tomography scanner. To evaluate 5-HT(2A) receptor binding, cortical nondisplaceable binding potentials (BP(ND)) were calculated using the simplified reference tissue model with the cerebellum as a reference region.
Results: After intravenous injection, all compounds entered the brain and distributed preferentially into the cortical areas, in accordance with the known 5-HT(2A) receptor distribution. The largest target-to-background binding ratio was found for [(11)C]Cimbi-36 which also had a high brain uptake compared to its analogues. The cortical binding of [(11)C]Cimbi-36 was decreased by pretreatment with ketanserin, supporting 5-HT(2A) receptor selectivity in vivo. [(11)C]Cimbi-82 and [(11)C]Cimbi-21 showed lower cortical BP(ND), while [(11)C]Cimbi-27, [(11)C]Cimbi-29, [(11)C]Cimbi-31 and [(11)C]Cimbi-88 gave rise to cortical BP(ND) similar to that of [(11)C]Cimbi-5.
Conclusion: [(11)C]Cimbi-36 is currently the most promising candidate for investigation of 5-HT(2A) receptor agonist binding in the living human brain with PET.
Similar articles
- Radiosynthesis and evaluation of 11C-CIMBI-5 as a 5-HT2A receptor agonist radioligand for PET.Ettrup A, Palner M, Gillings N, Santini MA, Hansen M, Kornum BR, Rasmussen LK, Någren K, Madsen J, Begtrup M, Knudsen GM.Ettrup A, et al.J Nucl Med. 2010 Nov;51(11):1763-70. doi: 10.2967/jnumed.109.074021. Epub 2010 Oct 18.J Nucl Med. 2010.PMID:20956470
- Characterization of [(11)C]Cimbi-36 as an agonist PET radioligand for the 5-HT(2A) and 5-HT(2C) receptors in the nonhuman primate brain.Finnema SJ, Stepanov V, Ettrup A, Nakao R, Amini N, Svedberg M, Lehmann C, Hansen M, Knudsen GM, Halldin C.Finnema SJ, et al.Neuroimage. 2014 Jan 1;84:342-53. doi: 10.1016/j.neuroimage.2013.08.035. Epub 2013 Aug 28.Neuroimage. 2014.PMID:23994452
- Synthesis and evaluation of (18)F-labeled 5-HT2A receptor agonists as PET ligands.Herth MM, Petersen IN, Hansen HD, Hansen M, Ettrup A, Jensen AA, Lehel S, Dyssegaard A, Gillings N, Knudsen GM, Kristensen JL.Herth MM, et al.Nucl Med Biol. 2016 Aug;43(8):455-62. doi: 10.1016/j.nucmedbio.2016.02.011. Epub 2016 Apr 19.Nucl Med Biol. 2016.PMID:27209485
- Classics in Neuroimaging: The Serotonergic 2A Receptor System-from Discovery to Modern Molecular Imaging.T L'Estrade E, Hansen HD, Erlandsson M, Ohlsson TG, Knudsen GM, Herth MM.T L'Estrade E, et al.ACS Chem Neurosci. 2018 Jun 20;9(6):1226-1229. doi: 10.1021/acschemneuro.8b00176. Epub 2018 May 15.ACS Chem Neurosci. 2018.PMID:29763291Review.
- Current radiosynthesis strategies for 5-HT2A receptor PET tracers.Herth MM, Knudsen GM.Herth MM, et al.J Labelled Comp Radiopharm. 2015 Jun 15;58(7):265-73. doi: 10.1002/jlcr.3288. Epub 2015 May 22.J Labelled Comp Radiopharm. 2015.PMID:25997728Review.
Cited by
- Application of cross-species PET imaging to assess neurotransmitter release in brain.Finnema SJ, Scheinin M, Shahid M, Lehto J, Borroni E, Bang-Andersen B, Sallinen J, Wong E, Farde L, Halldin C, Grimwood S.Finnema SJ, et al.Psychopharmacology (Berl). 2015 Nov;232(21-22):4129-57. doi: 10.1007/s00213-015-3938-6. Epub 2015 Apr 30.Psychopharmacology (Berl). 2015.PMID:25921033Free PMC article.Review.
- NRM 2021 Abstract Booklet.[No authors listed][No authors listed]J Cereb Blood Flow Metab. 2021 Dec;41(1_suppl):11-309. doi: 10.1177/0271678X211061050.J Cereb Blood Flow Metab. 2021.PMID:34905986Free PMC article.No abstract available.
- Molecular and Functional Imaging Studies of Psychedelic Drug Action in Animals and Humans.Cumming P, Scheidegger M, Dornbierer D, Palner M, Quednow BB, Martin-Soelch C.Cumming P, et al.Molecules. 2021 Apr 22;26(9):2451. doi: 10.3390/molecules26092451.Molecules. 2021.PMID:33922330Free PMC article.Review.
- Comparative neuropharmacology of N-(2-methoxybenzyl)-2,5-dimethoxyphenethylamine (NBOMe) hallucinogens and their 2C counterparts in male rats.Elmore JS, Decker AM, Sulima A, Rice KC, Partilla JS, Blough BE, Baumann MH.Elmore JS, et al.Neuropharmacology. 2018 Nov;142:240-250. doi: 10.1016/j.neuropharm.2018.02.033. Epub 2018 Mar 1.Neuropharmacology. 2018.PMID:29501528Free PMC article.
- Psychedelics.Nichols DE.Nichols DE.Pharmacol Rev. 2016 Apr;68(2):264-355. doi: 10.1124/pr.115.011478.Pharmacol Rev. 2016.PMID:26841800Free PMC article.Review.
References
Publication types
MeSH terms
Substances
Related information
LinkOut - more resources
Full Text Sources
Other Literature Sources